File size: 5,271 Bytes
faf5722 65cf0cb faf5722 74c3ced c3ded03 74c3ced 65cf0cb faf5722 d457f58 74c3ced d457f58 74c3ced d457f58 65cf0cb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
---
language:
- en
license: mit
datasets:
- UCLA-AGI/SPIN_iter0
pipeline_tag: text-generation
model-index:
- name: test0
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 63.65
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=UCLA-AGI/test0
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 84.44
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=UCLA-AGI/test0
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 61.01
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=UCLA-AGI/test0
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 50.48
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=UCLA-AGI/test0
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 77.98
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=UCLA-AGI/test0
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 36.69
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=UCLA-AGI/test0
name: Open LLM Leaderboard
---
Self-Play Fine-Tuning Converts Weak Language Models to Strong Language Models (https://arxiv.org/abs/2401.01335)
# zephyr-7b-sft-full-spin-iter0
This model is a self-play fine-tuned model at iteration 0 from [alignment-handbook/zephyr-7b-sft-full](https://huggingface.co/alignment-handbook/zephyr-7b-sft-full) using synthetic data based on on the [HuggingFaceH4/ultrachat_200k](https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k) dataset.
## Model Details
### Model Description
- Model type: A 7B parameter GPT-like model fine-tuned on synthetic datasets.
- Language(s) (NLP): Primarily English
- License: MIT
- Finetuned from model: alignment-handbook/zephyr-7b-sft-full (based on mistralai/Mistral-7B-v0.1)
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 64
- optimizer: RMSProp
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 2.0
## [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_UCLA-AGI__test0)
| Metric | Value |
|-----------------------|---------------------------|
| Avg. | 62.37 |
| ARC (25-shot) | 63.65 |
| HellaSwag (10-shot) | 84.44 |
| MMLU (5-shot) | 61.01 |
| TruthfulQA (0-shot) | 50.48 |
| Winogrande (5-shot) | 77.98 |
| GSM8K (5-shot) | 36.69 |
## Citation
```
@misc{chen2024selfplay,
title={Self-Play Fine-Tuning Converts Weak Language Models to Strong Language Models},
author={Zixiang Chen and Yihe Deng and Huizhuo Yuan and Kaixuan Ji and Quanquan Gu},
year={2024},
eprint={2401.01335},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_UCLA-AGI__test0)
| Metric |Value|
|---------------------------------|----:|
|Avg. |62.37|
|AI2 Reasoning Challenge (25-Shot)|63.65|
|HellaSwag (10-Shot) |84.44|
|MMLU (5-Shot) |61.01|
|TruthfulQA (0-shot) |50.48|
|Winogrande (5-shot) |77.98|
|GSM8k (5-shot) |36.69|
|