--- language: - en license: mit datasets: - UCLA-AGI/SPIN_iter2 pipeline_tag: text-generation model-index: - name: test-test results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 66.47 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=UCLA-AGI/test-test name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 85.82 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=UCLA-AGI/test-test name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 61.48 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=UCLA-AGI/test-test name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 57.75 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=UCLA-AGI/test-test name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 76.95 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=UCLA-AGI/test-test name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 32.75 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=UCLA-AGI/test-test name: Open LLM Leaderboard --- Self-Play Fine-Tuning Converts Weak Language Models to Strong Language Models (https://arxiv.org/abs/2401.01335) # zephyr-7b-sft-full-spin-iter2 This model is a self-play fine-tuned model at iteration 2 from [alignment-handbook/zephyr-7b-sft-full](https://huggingface.co/alignment-handbook/zephyr-7b-sft-full) using synthetic data based on on the [HuggingFaceH4/ultrachat_200k](https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k) dataset. ## Model Details ### Model Description - Model type: A 7B parameter GPT-like model fine-tuned on synthetic datasets. - Language(s) (NLP): Primarily English - License: MIT - Finetuned from model: alignment-handbook/zephyr-7b-sft-full (based on mistralai/Mistral-7B-v0.1) ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-07 - train_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 64 - optimizer: RMSProp - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 2.0 ## [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_UCLA-AGI__test-test) | Metric | Value | |-----------------------|---------------------------| | Avg. | 63.54 | | ARC (25-shot) | 66.47 | | HellaSwag (10-shot) | 85.82 | | MMLU (5-shot) | 61.48 | | TruthfulQA (0-shot) | 57.75 | | Winogrande (5-shot) | 76.95 | | GSM8K (5-shot) | 32.75 | ## Citation ``` @misc{chen2024selfplay, title={Self-Play Fine-Tuning Converts Weak Language Models to Strong Language Models}, author={Zixiang Chen and Yihe Deng and Huizhuo Yuan and Kaixuan Ji and Quanquan Gu}, year={2024}, eprint={2401.01335}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_UCLA-AGI__test-test) | Metric |Value| |---------------------------------|----:| |Avg. |63.54| |AI2 Reasoning Challenge (25-Shot)|66.47| |HellaSwag (10-Shot) |85.82| |MMLU (5-Shot) |61.48| |TruthfulQA (0-shot) |57.75| |Winogrande (5-shot) |76.95| |GSM8k (5-shot) |32.75|