--- license: apache-2.0 datasets: - UCSC-VLAA/Recap-DataComp-1B --- # Model Card for ViT-L-14-CLIPS-Recap-DataComp-1B ## Model Details - **Repository:** https://github.com/UCSC-VLAA/CLIPS - **Paper:** https://arxiv.org/abs/2411.16828 - **Project Page:** https://ucsc-vlaa.github.io/CLIPS/ ## Model Usage ### With OpenCLIP #### Note: We made modifications to the tokenizer implementation in open_clip/tokenizer.py. #### For more details, refer to https://github.com/UCSC-VLAA/CLIPS. ``` import torch import torch.nn.functional as F from urllib.request import urlopen from PIL import Image from open_clip import create_model_from_pretrained, get_tokenizer model, preprocess = create_model_from_pretrained('hf-hub:UCSC-VLAA/ViT-L-14-CLIPS-Recap-DataComp-1B') tokenizer = get_tokenizer('hf-hub:UCSC-VLAA/ViT-L-14-CLIPS-Recap-DataComp-1B') image = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) image = preprocess(image).unsqueeze(0) text = tokenizer(["a diagram", "a dog", "a cat", "a beignet"], context_length=model.context_length) with torch.no_grad(), torch.cuda.amp.autocast(): image_features = model.encode_image(image) text_features = model.encode_text(text) image_features = F.normalize(image_features, dim=-1) text_features = F.normalize(text_features, dim=-1) text_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1) print("Label probs:", text_probs) # prints: [[0., 0., 0., 1.0]] ```