--- license: other base_model: vgaraujov/bart-base-spanish tags: - generated_from_trainer metrics: - rouge model-index: - name: barto_prompts results: [] language: - es library_name: transformers pipeline_tag: text2text-generation widget: - text: >- Resume la emergencia: Buenos días estoy en el transporte público de mi ciudad, a una pasajera le están dando ataques de epilepsia, el señor conductor dice que estamos en el sector 42. La pasajera tiene aproximadamente 33 años por favor ayúdenos. example_title: Text summarization - text: >- Extrae las palabras clave de la emergencia: Buenas tardes, estoy viendo un incendio forestal enorme en el sector 12, envíen ayuda por favor. example_title: Keyword extraction - text: >- La palabra que mejor representa la emergencia es: Buenas noches, le acaban de robar el celular a mi amigo, envíen a la policía por favor. example_title: Word representation - text: >- Clasifica la emergencia en [CLAVE ROJA, CLAVE NARANJA, CLAVE AMARILLA, CLAVE VERDE]: Buenos días, me podrían ayudar por favor un vehículo se encuentra obstaculizando mi estacionamiento. example_title: Text classification --- # barto_prompts This model is a fine-tuned version of [vgaraujov/bart-base-spanish](https://huggingface.co/vgaraujov/bart-base-spanish). It achieves the following results on the evaluation set: - Loss: 0.5242 - Rouge1: 77.7794 - Rouge2: 62.5213 - Rougel: 77.3853 - Rougelsum: 77.2245 - Gen Len: 11.6686 ## Model description This checkpoint uses BARTO as base model and different prefix to achieve different tasks in emergency transcribed calls: - "Resume la emergencia: ": For text summarization - "Extrae las palabras clave de la emergencia: ": For keyword extraction - "La palabra que mejor representa la emergencia es: ": Gives a word that represents the text - "Clasifica la emergencia en [CLAVE ROJA, CLAVE NARANJA, CLAVE AMARILLA, CLAVE VERDE]: ": For text classification ## Intended uses & limitations Under privacy agreement. ## Training and evaluation data Training data used has been provided by the ECU 911 service under a strict confidentiality agreement. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - distributed_type: multi-GPU - num_devices: 3 - total_train_batch_size: 48 - total_eval_batch_size: 48 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 1.3631 | 1.0 | 92 | 0.6643 | 66.5661 | 49.8557 | 66.156 | 66.0723 | 10.7803 | | 0.607 | 2.0 | 184 | 0.5528 | 72.4516 | 55.3295 | 72.0424 | 71.9591 | 10.8390 | | 0.4994 | 3.0 | 276 | 0.5330 | 74.2798 | 56.9793 | 73.6683 | 73.6271 | 10.9072 | | 0.4215 | 4.0 | 368 | 0.5246 | 75.5697 | 58.5086 | 75.1434 | 75.0331 | 11.5663 | | 0.3744 | 5.0 | 460 | 0.5302 | 75.9054 | 60.4386 | 75.4245 | 75.294 | 11.6496 | | 0.3392 | 6.0 | 552 | 0.5238 | 76.8758 | 61.7901 | 76.4882 | 76.444 | 11.7254 | | 0.3014 | 7.0 | 644 | 0.5302 | 76.8835 | 61.9104 | 76.4603 | 76.3661 | 11.6117 | | 0.2807 | 8.0 | 736 | 0.5239 | 77.4479 | 62.0839 | 77.0472 | 76.8683 | 11.5417 | | 0.265 | 9.0 | 828 | 0.5210 | 77.5274 | 62.249 | 77.1446 | 76.9984 | 11.5890 | | 0.2594 | 10.0 | 920 | 0.5242 | 77.7794 | 62.5213 | 77.3853 | 77.2245 | 11.6686 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0