--- base_model: openai/whisper-large language: - es library_name: peft license: apache-2.0 tags: - generated_from_trainer model-index: - name: Whisper openai-whisper-large-LoRA32-es_ecu911 results: [] --- # Whisper openai-whisper-large-LoRA32-es_ecu911 This model is a fine-tuned version of [openai/whisper-large](https://huggingface.co/openai/whisper-large) on the llamadas ecu9111 segmentos dmarquez dataset. It achieves the following results on the evaluation set: - Loss: 0.7446 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.253 | 1.0 | 53 | 1.0113 | | 0.7443 | 2.0 | 106 | 0.7473 | | 0.6761 | 3.0 | 159 | 0.7312 | | 0.6156 | 4.0 | 212 | 0.7381 | | 0.5384 | 5.0 | 265 | 0.7446 | ### Framework versions - PEFT 0.13.2 - Transformers 4.45.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.1