--- library_name: transformers language: - es license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer metrics: - wer model-index: - name: Whisper openai-whisper-tiny results: [] --- # Whisper openai-whisper-tiny This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the llamadas ecu911 dataset. It achieves the following results on the evaluation set: - Loss: 0.3725 - Wer: 83.7047 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 3 - total_train_batch_size: 6 - total_eval_batch_size: 3 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 2000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:-------:| | 1.0087 | 7.9365 | 500 | 1.1373 | 99.8678 | | 0.4392 | 15.8730 | 1000 | 0.6719 | 80.3625 | | 0.2542 | 23.8095 | 1500 | 0.4403 | 79.3051 | | 0.196 | 31.7460 | 2000 | 0.3725 | 83.7047 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1