File size: 33,236 Bytes
a9ae067
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
2022-10-26 19:45:19,393 ----------------------------------------------------------------------------------------------------
2022-10-26 19:45:19,398 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): BertModel(
      (embeddings): BertEmbeddings(
        (word_embeddings): Embedding(35000, 768, padding_idx=0)
        (position_embeddings): Embedding(512, 768)
        (token_type_embeddings): Embedding(2, 768)
        (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): BertEncoder(
        (layer): ModuleList(
          (0): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (1): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (2): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (3): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (4): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (5): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (6): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (7): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (8): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (9): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (10): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (11): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
      (pooler): BertPooler(
        (dense): Linear(in_features=768, out_features=768, bias=True)
        (activation): Tanh()
      )
    )
  )
  (word_dropout): WordDropout(p=0.05)
  (locked_dropout): LockedDropout(p=0.5)
  (embedding2nn): Linear(in_features=768, out_features=768, bias=True)
  (rnn): LSTM(768, 256, batch_first=True, bidirectional=True)
  (linear): Linear(in_features=512, out_features=15, bias=True)
  (loss_function): ViterbiLoss()
  (crf): CRF()
)"
2022-10-26 19:45:19,409 ----------------------------------------------------------------------------------------------------
2022-10-26 19:45:19,415 Corpus: "Corpus: 8551 train + 1425 dev + 1425 test sentences"
2022-10-26 19:45:19,418 ----------------------------------------------------------------------------------------------------
2022-10-26 19:45:19,425 Parameters:
2022-10-26 19:45:19,429  - learning_rate: "0.010000"
2022-10-26 19:45:19,436  - mini_batch_size: "8"
2022-10-26 19:45:19,441  - patience: "3"
2022-10-26 19:45:19,446  - anneal_factor: "0.5"
2022-10-26 19:45:19,447  - max_epochs: "10"
2022-10-26 19:45:19,466  - shuffle: "True"
2022-10-26 19:45:19,470  - train_with_dev: "False"
2022-10-26 19:45:19,475  - batch_growth_annealing: "False"
2022-10-26 19:45:19,476 ----------------------------------------------------------------------------------------------------
2022-10-26 19:45:19,479 Model training base path: "/content/model/mono_ner"
2022-10-26 19:45:19,480 ----------------------------------------------------------------------------------------------------
2022-10-26 19:45:19,484 Device: cuda:0
2022-10-26 19:45:19,489 ----------------------------------------------------------------------------------------------------
2022-10-26 19:45:19,491 Embeddings storage mode: none
2022-10-26 19:45:19,496 ----------------------------------------------------------------------------------------------------
2022-10-26 19:46:27,364 epoch 1 - iter 106/1069 - loss 0.49979466 - samples/sec: 12.50 - lr: 0.010000
2022-10-26 19:47:29,408 epoch 1 - iter 212/1069 - loss 0.36858293 - samples/sec: 13.67 - lr: 0.010000
2022-10-26 19:48:32,710 epoch 1 - iter 318/1069 - loss 0.31288040 - samples/sec: 13.40 - lr: 0.010000
2022-10-26 19:49:36,271 epoch 1 - iter 424/1069 - loss 0.27906252 - samples/sec: 13.34 - lr: 0.010000
2022-10-26 19:50:40,278 epoch 1 - iter 530/1069 - loss 0.25802546 - samples/sec: 13.25 - lr: 0.010000
2022-10-26 19:51:45,008 epoch 1 - iter 636/1069 - loss 0.24111842 - samples/sec: 13.10 - lr: 0.010000
2022-10-26 19:52:47,602 epoch 1 - iter 742/1069 - loss 0.22829427 - samples/sec: 13.55 - lr: 0.010000
2022-10-26 19:53:50,115 epoch 1 - iter 848/1069 - loss 0.21731094 - samples/sec: 13.57 - lr: 0.010000
2022-10-26 19:54:53,793 epoch 1 - iter 954/1069 - loss 0.20876564 - samples/sec: 13.32 - lr: 0.010000
2022-10-26 19:55:55,252 epoch 1 - iter 1060/1069 - loss 0.20166716 - samples/sec: 13.80 - lr: 0.010000
2022-10-26 19:56:00,400 ----------------------------------------------------------------------------------------------------
2022-10-26 19:56:00,402 EPOCH 1 done: loss 0.2008 - lr 0.010000
2022-10-26 19:57:09,701 Evaluating as a multi-label problem: False
2022-10-26 19:57:09,740 DEV : loss 0.09606283158063889 - f1-score (micro avg)  0.7526
2022-10-26 19:57:09,783 BAD EPOCHS (no improvement): 0
2022-10-26 19:57:09,785 saving best model
2022-10-26 19:57:11,433 ----------------------------------------------------------------------------------------------------
2022-10-26 19:58:18,467 epoch 2 - iter 106/1069 - loss 0.12276787 - samples/sec: 12.65 - lr: 0.010000
2022-10-26 19:59:24,322 epoch 2 - iter 212/1069 - loss 0.12231755 - samples/sec: 12.88 - lr: 0.010000
2022-10-26 20:00:41,700 epoch 2 - iter 318/1069 - loss 0.12435630 - samples/sec: 10.96 - lr: 0.010000
2022-10-26 20:01:46,059 epoch 2 - iter 424/1069 - loss 0.12564768 - samples/sec: 13.18 - lr: 0.010000
2022-10-26 20:02:49,678 epoch 2 - iter 530/1069 - loss 0.12512958 - samples/sec: 13.33 - lr: 0.010000
2022-10-26 20:04:05,654 epoch 2 - iter 636/1069 - loss 0.12238487 - samples/sec: 11.16 - lr: 0.010000
2022-10-26 20:05:09,552 epoch 2 - iter 742/1069 - loss 0.12010170 - samples/sec: 13.27 - lr: 0.010000
2022-10-26 20:06:14,022 epoch 2 - iter 848/1069 - loss 0.11967127 - samples/sec: 13.16 - lr: 0.010000
2022-10-26 20:07:19,659 epoch 2 - iter 954/1069 - loss 0.11888882 - samples/sec: 12.92 - lr: 0.010000
2022-10-26 20:08:29,253 epoch 2 - iter 1060/1069 - loss 0.11866747 - samples/sec: 12.19 - lr: 0.010000
2022-10-26 20:08:34,370 ----------------------------------------------------------------------------------------------------
2022-10-26 20:08:34,372 EPOCH 2 done: loss 0.1185 - lr 0.010000
2022-10-26 20:09:47,920 Evaluating as a multi-label problem: False
2022-10-26 20:09:47,955 DEV : loss 0.07920133322477341 - f1-score (micro avg)  0.8155
2022-10-26 20:09:47,998 BAD EPOCHS (no improvement): 0
2022-10-26 20:09:48,000 saving best model
2022-10-26 20:09:49,587 ----------------------------------------------------------------------------------------------------
2022-10-26 20:10:53,964 epoch 3 - iter 106/1069 - loss 0.10166018 - samples/sec: 13.18 - lr: 0.010000
2022-10-26 20:11:56,797 epoch 3 - iter 212/1069 - loss 0.10111216 - samples/sec: 13.50 - lr: 0.010000
2022-10-26 20:13:03,180 epoch 3 - iter 318/1069 - loss 0.10239146 - samples/sec: 12.78 - lr: 0.010000
2022-10-26 20:14:08,543 epoch 3 - iter 424/1069 - loss 0.10173990 - samples/sec: 12.98 - lr: 0.010000
2022-10-26 20:15:13,145 epoch 3 - iter 530/1069 - loss 0.10135509 - samples/sec: 13.13 - lr: 0.010000
2022-10-26 20:16:19,356 epoch 3 - iter 636/1069 - loss 0.10020505 - samples/sec: 12.81 - lr: 0.010000
2022-10-26 20:17:21,470 epoch 3 - iter 742/1069 - loss 0.10033292 - samples/sec: 13.65 - lr: 0.010000
2022-10-26 20:18:25,712 epoch 3 - iter 848/1069 - loss 0.09965180 - samples/sec: 13.20 - lr: 0.010000
2022-10-26 20:19:32,123 epoch 3 - iter 954/1069 - loss 0.09942363 - samples/sec: 12.77 - lr: 0.010000
2022-10-26 20:20:37,362 epoch 3 - iter 1060/1069 - loss 0.09818458 - samples/sec: 13.00 - lr: 0.010000
2022-10-26 20:20:42,922 ----------------------------------------------------------------------------------------------------
2022-10-26 20:20:42,923 EPOCH 3 done: loss 0.0981 - lr 0.010000
2022-10-26 20:21:56,678 Evaluating as a multi-label problem: False
2022-10-26 20:21:56,717 DEV : loss 0.07603894919157028 - f1-score (micro avg)  0.8361
2022-10-26 20:21:56,759 BAD EPOCHS (no improvement): 0
2022-10-26 20:21:56,761 saving best model
2022-10-26 20:21:58,329 ----------------------------------------------------------------------------------------------------
2022-10-26 20:23:02,865 epoch 4 - iter 106/1069 - loss 0.08581557 - samples/sec: 13.14 - lr: 0.010000
2022-10-26 20:24:06,558 epoch 4 - iter 212/1069 - loss 0.08690126 - samples/sec: 13.32 - lr: 0.010000
2022-10-26 20:25:11,549 epoch 4 - iter 318/1069 - loss 0.08740134 - samples/sec: 13.05 - lr: 0.010000
2022-10-26 20:26:16,171 epoch 4 - iter 424/1069 - loss 0.08691255 - samples/sec: 13.12 - lr: 0.010000
2022-10-26 20:27:21,108 epoch 4 - iter 530/1069 - loss 0.08743159 - samples/sec: 13.06 - lr: 0.010000
2022-10-26 20:28:26,306 epoch 4 - iter 636/1069 - loss 0.08700733 - samples/sec: 13.01 - lr: 0.010000
2022-10-26 20:29:28,907 epoch 4 - iter 742/1069 - loss 0.08700591 - samples/sec: 13.55 - lr: 0.010000
2022-10-26 20:30:34,735 epoch 4 - iter 848/1069 - loss 0.08615337 - samples/sec: 12.88 - lr: 0.010000
2022-10-26 20:32:03,266 epoch 4 - iter 954/1069 - loss 0.08562659 - samples/sec: 9.58 - lr: 0.010000
2022-10-26 20:33:59,270 epoch 4 - iter 1060/1069 - loss 0.08544457 - samples/sec: 7.31 - lr: 0.010000
2022-10-26 20:34:09,369 ----------------------------------------------------------------------------------------------------
2022-10-26 20:34:09,371 EPOCH 4 done: loss 0.0853 - lr 0.010000
2022-10-26 20:37:53,248 Evaluating as a multi-label problem: False
2022-10-26 20:37:53,283 DEV : loss 0.07134225219488144 - f1-score (micro avg)  0.8336
2022-10-26 20:37:53,326 BAD EPOCHS (no improvement): 1
2022-10-26 20:37:53,328 ----------------------------------------------------------------------------------------------------
2022-10-26 20:39:45,902 epoch 5 - iter 106/1069 - loss 0.07612726 - samples/sec: 7.53 - lr: 0.010000
2022-10-26 20:41:42,470 epoch 5 - iter 212/1069 - loss 0.07932025 - samples/sec: 7.28 - lr: 0.010000
2022-10-26 20:43:01,451 epoch 5 - iter 318/1069 - loss 0.07766485 - samples/sec: 10.74 - lr: 0.010000
2022-10-26 20:44:06,242 epoch 5 - iter 424/1069 - loss 0.07782655 - samples/sec: 13.09 - lr: 0.010000
2022-10-26 20:45:10,011 epoch 5 - iter 530/1069 - loss 0.07797363 - samples/sec: 13.30 - lr: 0.010000
2022-10-26 20:46:18,444 epoch 5 - iter 636/1069 - loss 0.07784710 - samples/sec: 12.39 - lr: 0.010000
2022-10-26 20:47:22,712 epoch 5 - iter 742/1069 - loss 0.07764170 - samples/sec: 13.20 - lr: 0.010000
2022-10-26 20:48:26,544 epoch 5 - iter 848/1069 - loss 0.07765970 - samples/sec: 13.29 - lr: 0.010000
2022-10-26 20:49:32,065 epoch 5 - iter 954/1069 - loss 0.07726613 - samples/sec: 12.94 - lr: 0.010000
2022-10-26 20:50:36,714 epoch 5 - iter 1060/1069 - loss 0.07692019 - samples/sec: 13.12 - lr: 0.010000
2022-10-26 20:50:41,823 ----------------------------------------------------------------------------------------------------
2022-10-26 20:50:41,825 EPOCH 5 done: loss 0.0771 - lr 0.010000
2022-10-26 20:51:56,635 Evaluating as a multi-label problem: False
2022-10-26 20:51:56,681 DEV : loss 0.06873895972967148 - f1-score (micro avg)  0.848
2022-10-26 20:51:56,730 BAD EPOCHS (no improvement): 0
2022-10-26 20:51:56,732 saving best model
2022-10-26 20:51:58,276 ----------------------------------------------------------------------------------------------------
2022-10-26 20:53:04,269 epoch 6 - iter 106/1069 - loss 0.07259857 - samples/sec: 12.85 - lr: 0.010000
2022-10-26 20:54:08,435 epoch 6 - iter 212/1069 - loss 0.06894409 - samples/sec: 13.22 - lr: 0.010000
2022-10-26 20:55:15,290 epoch 6 - iter 318/1069 - loss 0.06918623 - samples/sec: 12.69 - lr: 0.010000
2022-10-26 20:56:20,441 epoch 6 - iter 424/1069 - loss 0.06917844 - samples/sec: 13.02 - lr: 0.010000
2022-10-26 20:57:24,834 epoch 6 - iter 530/1069 - loss 0.06940973 - samples/sec: 13.17 - lr: 0.010000
2022-10-26 20:58:31,661 epoch 6 - iter 636/1069 - loss 0.06932249 - samples/sec: 12.69 - lr: 0.010000
2022-10-26 20:59:37,057 epoch 6 - iter 742/1069 - loss 0.06858729 - samples/sec: 12.97 - lr: 0.010000
2022-10-26 21:00:42,037 epoch 6 - iter 848/1069 - loss 0.06850174 - samples/sec: 13.05 - lr: 0.010000
2022-10-26 21:01:48,234 epoch 6 - iter 954/1069 - loss 0.06855966 - samples/sec: 12.81 - lr: 0.010000
2022-10-26 21:02:54,530 epoch 6 - iter 1060/1069 - loss 0.06812598 - samples/sec: 12.79 - lr: 0.010000
2022-10-26 21:03:00,480 ----------------------------------------------------------------------------------------------------
2022-10-26 21:03:00,482 EPOCH 6 done: loss 0.0680 - lr 0.010000
2022-10-26 21:04:16,435 Evaluating as a multi-label problem: False
2022-10-26 21:04:16,476 DEV : loss 0.05917559936642647 - f1-score (micro avg)  0.8775
2022-10-26 21:04:16,522 BAD EPOCHS (no improvement): 0
2022-10-26 21:04:16,526 saving best model
2022-10-26 21:04:18,071 ----------------------------------------------------------------------------------------------------
2022-10-26 21:05:24,303 epoch 7 - iter 106/1069 - loss 0.06352705 - samples/sec: 12.81 - lr: 0.010000
2022-10-26 21:06:30,784 epoch 7 - iter 212/1069 - loss 0.06166309 - samples/sec: 12.76 - lr: 0.010000
2022-10-26 21:07:35,118 epoch 7 - iter 318/1069 - loss 0.06134693 - samples/sec: 13.18 - lr: 0.010000
2022-10-26 21:08:39,228 epoch 7 - iter 424/1069 - loss 0.06161759 - samples/sec: 13.23 - lr: 0.010000
2022-10-26 21:10:15,880 epoch 7 - iter 530/1069 - loss 0.06137938 - samples/sec: 8.77 - lr: 0.010000
2022-10-26 21:12:14,808 epoch 7 - iter 636/1069 - loss 0.06149529 - samples/sec: 7.13 - lr: 0.010000
2022-10-26 21:14:13,856 epoch 7 - iter 742/1069 - loss 0.06173201 - samples/sec: 7.12 - lr: 0.010000
2022-10-26 21:15:51,294 epoch 7 - iter 848/1069 - loss 0.06166752 - samples/sec: 8.70 - lr: 0.010000
2022-10-26 21:16:59,785 epoch 7 - iter 954/1069 - loss 0.06152770 - samples/sec: 12.38 - lr: 0.010000
2022-10-26 21:18:05,005 epoch 7 - iter 1060/1069 - loss 0.06131402 - samples/sec: 13.00 - lr: 0.010000
2022-10-26 21:18:10,767 ----------------------------------------------------------------------------------------------------
2022-10-26 21:18:10,769 EPOCH 7 done: loss 0.0613 - lr 0.010000
2022-10-26 21:19:27,868 Evaluating as a multi-label problem: False
2022-10-26 21:19:27,905 DEV : loss 0.061052411794662476 - f1-score (micro avg)  0.8814
2022-10-26 21:19:27,952 BAD EPOCHS (no improvement): 0
2022-10-26 21:19:27,954 saving best model
2022-10-26 21:19:29,378 ----------------------------------------------------------------------------------------------------
2022-10-26 21:20:36,789 epoch 8 - iter 106/1069 - loss 0.05390116 - samples/sec: 12.58 - lr: 0.010000
2022-10-26 21:21:41,786 epoch 8 - iter 212/1069 - loss 0.05771654 - samples/sec: 13.05 - lr: 0.010000
2022-10-26 21:22:48,800 epoch 8 - iter 318/1069 - loss 0.05630827 - samples/sec: 12.66 - lr: 0.010000
2022-10-26 21:23:54,308 epoch 8 - iter 424/1069 - loss 0.05571937 - samples/sec: 12.95 - lr: 0.010000
2022-10-26 21:25:00,994 epoch 8 - iter 530/1069 - loss 0.05600622 - samples/sec: 12.72 - lr: 0.010000
2022-10-26 21:26:05,543 epoch 8 - iter 636/1069 - loss 0.05638838 - samples/sec: 13.14 - lr: 0.010000
2022-10-26 21:27:11,826 epoch 8 - iter 742/1069 - loss 0.05616568 - samples/sec: 12.80 - lr: 0.010000
2022-10-26 21:28:18,954 epoch 8 - iter 848/1069 - loss 0.05584409 - samples/sec: 12.64 - lr: 0.010000
2022-10-26 21:29:25,542 epoch 8 - iter 954/1069 - loss 0.05561947 - samples/sec: 12.74 - lr: 0.010000
2022-10-26 21:30:30,533 epoch 8 - iter 1060/1069 - loss 0.05524983 - samples/sec: 13.05 - lr: 0.010000
2022-10-26 21:30:35,751 ----------------------------------------------------------------------------------------------------
2022-10-26 21:30:35,755 EPOCH 8 done: loss 0.0553 - lr 0.010000
2022-10-26 21:31:53,000 Evaluating as a multi-label problem: False
2022-10-26 21:31:53,038 DEV : loss 0.06685522198677063 - f1-score (micro avg)  0.8808
2022-10-26 21:31:53,088 BAD EPOCHS (no improvement): 1
2022-10-26 21:31:53,092 ----------------------------------------------------------------------------------------------------
2022-10-26 21:33:00,202 epoch 9 - iter 106/1069 - loss 0.04591263 - samples/sec: 12.64 - lr: 0.010000
2022-10-26 21:34:05,608 epoch 9 - iter 212/1069 - loss 0.04753505 - samples/sec: 12.97 - lr: 0.010000
2022-10-26 21:35:08,841 epoch 9 - iter 318/1069 - loss 0.04983626 - samples/sec: 13.41 - lr: 0.010000
2022-10-26 21:36:15,599 epoch 9 - iter 424/1069 - loss 0.04851610 - samples/sec: 12.70 - lr: 0.010000
2022-10-26 21:37:22,043 epoch 9 - iter 530/1069 - loss 0.04882362 - samples/sec: 12.77 - lr: 0.010000
2022-10-26 21:38:26,514 epoch 9 - iter 636/1069 - loss 0.04925004 - samples/sec: 13.16 - lr: 0.010000
2022-10-26 21:39:34,184 epoch 9 - iter 742/1069 - loss 0.04945580 - samples/sec: 12.53 - lr: 0.010000
2022-10-26 21:40:39,778 epoch 9 - iter 848/1069 - loss 0.04945835 - samples/sec: 12.93 - lr: 0.010000
2022-10-26 21:41:44,710 epoch 9 - iter 954/1069 - loss 0.04953811 - samples/sec: 13.06 - lr: 0.010000
2022-10-26 21:42:52,682 epoch 9 - iter 1060/1069 - loss 0.04944091 - samples/sec: 12.48 - lr: 0.010000
2022-10-26 21:42:57,825 ----------------------------------------------------------------------------------------------------
2022-10-26 21:42:57,826 EPOCH 9 done: loss 0.0497 - lr 0.010000
2022-10-26 21:44:13,770 Evaluating as a multi-label problem: False
2022-10-26 21:44:13,809 DEV : loss 0.057355064898729324 - f1-score (micro avg)  0.8922
2022-10-26 21:44:13,856 BAD EPOCHS (no improvement): 0
2022-10-26 21:44:13,859 saving best model
2022-10-26 21:44:15,333 ----------------------------------------------------------------------------------------------------
2022-10-26 21:45:22,992 epoch 10 - iter 106/1069 - loss 0.03999971 - samples/sec: 12.54 - lr: 0.010000
2022-10-26 21:46:28,166 epoch 10 - iter 212/1069 - loss 0.04223290 - samples/sec: 13.01 - lr: 0.010000
2022-10-26 21:47:34,530 epoch 10 - iter 318/1069 - loss 0.04233629 - samples/sec: 12.78 - lr: 0.010000
2022-10-26 21:49:21,523 epoch 10 - iter 424/1069 - loss 0.04293457 - samples/sec: 7.93 - lr: 0.010000
2022-10-26 21:51:20,933 epoch 10 - iter 530/1069 - loss 0.04261612 - samples/sec: 7.10 - lr: 0.010000
2022-10-26 21:53:16,486 epoch 10 - iter 636/1069 - loss 0.04316492 - samples/sec: 7.34 - lr: 0.010000
2022-10-26 21:55:14,355 epoch 10 - iter 742/1069 - loss 0.04313719 - samples/sec: 7.20 - lr: 0.010000
2022-10-26 21:57:14,471 epoch 10 - iter 848/1069 - loss 0.04345674 - samples/sec: 7.06 - lr: 0.010000
2022-10-26 21:59:14,125 epoch 10 - iter 954/1069 - loss 0.04368164 - samples/sec: 7.09 - lr: 0.010000
2022-10-26 22:01:02,494 epoch 10 - iter 1060/1069 - loss 0.04413420 - samples/sec: 7.83 - lr: 0.010000
2022-10-26 22:01:08,438 ----------------------------------------------------------------------------------------------------
2022-10-26 22:01:08,440 EPOCH 10 done: loss 0.0440 - lr 0.010000
2022-10-26 22:02:22,434 Evaluating as a multi-label problem: False
2022-10-26 22:02:22,472 DEV : loss 0.06379110366106033 - f1-score (micro avg)  0.8877
2022-10-26 22:02:22,522 BAD EPOCHS (no improvement): 1
2022-10-26 22:02:23,953 ----------------------------------------------------------------------------------------------------
2022-10-26 22:02:23,963 loading file /content/model/mono_ner/best-model.pt
2022-10-26 22:02:26,538 SequenceTagger predicts: Dictionary with 15 tags: O, S-PER, B-PER, E-PER, I-PER, S-MISC, B-MISC, E-MISC, I-MISC, S-LOC, B-LOC, E-LOC, I-LOC, <START>, <STOP>
2022-10-26 22:03:39,014 Evaluating as a multi-label problem: False
2022-10-26 22:03:39,054 0.8798	0.8959	0.8878	0.8324
2022-10-26 22:03:39,056 
Results:
- F-score (micro) 0.8878
- F-score (macro) 0.8574
- Accuracy 0.8324

By class:
              precision    recall  f1-score   support

         PER     0.9124    0.9445    0.9282      2127
        MISC     0.8092    0.8317    0.8203       933
         LOC     0.8686    0.7835    0.8238       388

   micro avg     0.8798    0.8959    0.8878      3448
   macro avg     0.8634    0.8533    0.8574      3448
weighted avg     0.8795    0.8959    0.8872      3448

2022-10-26 22:03:39,059 ----------------------------------------------------------------------------------------------------