--- tags: - generated_from_trainer datasets: - govreport-summarization model-index: - name: Pegasus-x-base-govreport-12288-1024-numepoch-5 results: [] --- # Pegasus-x-base-govreport-12288-1024-numepoch-5 This model is a fine-tuned version of [google/pegasus-x-base](https://huggingface.co/google/pegasus-x-base) on the govreport-summarization dataset. It achieves the following results on the evaluation set: - Loss: 1.6740 ## Evaluation Score For test dataset **'ROUGE'**: { 'rouge1': 0.4861, 'rouge2': 0.2067, 'rougeL': 0.2446, 'rougeLsum': 0.2444 } **'BERT_SCORE'** {'f1': 0.8551, 'precision': 0.8583, 'recall': 0.852 } ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 64 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.0173 | 0.07 | 20 | 2.6677 | | 2.5674 | 0.15 | 40 | 2.2993 | | 2.3013 | 0.22 | 60 | 2.1024 | | 2.2145 | 0.29 | 80 | 1.9833 | | 2.1191 | 0.37 | 100 | 1.9383 | | 2.0709 | 0.44 | 120 | 1.8815 | | 2.0287 | 0.51 | 140 | 1.8623 | | 2.003 | 0.58 | 160 | 1.8467 | | 1.9842 | 0.66 | 180 | 1.8314 | | 1.9603 | 0.73 | 200 | 1.8307 | | 1.9493 | 0.8 | 220 | 1.8157 | | 1.9631 | 0.88 | 240 | 1.7919 | | 1.9332 | 0.95 | 260 | 1.7919 | | 1.9123 | 1.02 | 280 | 1.7836 | | 1.887 | 1.1 | 300 | 1.7672 | | 1.8743 | 1.17 | 320 | 1.7629 | | 1.8412 | 1.24 | 340 | 1.7566 | | 1.8508 | 1.32 | 360 | 1.7410 | | 1.8564 | 1.39 | 380 | 1.7403 | | 1.8686 | 1.46 | 400 | 1.7393 | | 1.8881 | 1.53 | 420 | 1.7420 | | 1.8629 | 1.61 | 440 | 1.7367 | | 1.8683 | 1.68 | 460 | 1.7288 | | 1.833 | 1.75 | 480 | 1.7300 | | 1.8621 | 1.83 | 500 | 1.7208 | | 1.8622 | 1.9 | 520 | 1.7211 | | 1.8147 | 1.97 | 540 | 1.7158 | | 1.8161 | 2.05 | 560 | 1.7117 | | 1.8239 | 2.12 | 580 | 1.7090 | | 1.8185 | 2.19 | 600 | 1.7100 | | 1.8605 | 2.27 | 620 | 1.7057 | | 1.7919 | 2.34 | 640 | 1.6996 | | 1.8026 | 2.41 | 660 | 1.7012 | | 1.7785 | 2.48 | 680 | 1.6980 | | 1.8296 | 2.56 | 700 | 1.6941 | | 1.802 | 2.63 | 720 | 1.6944 | | 1.7783 | 2.7 | 740 | 1.6927 | | 1.7998 | 2.78 | 760 | 1.6922 | | 1.8128 | 2.85 | 780 | 1.6890 | | 1.7762 | 2.92 | 800 | 1.6909 | | 1.7631 | 3.0 | 820 | 1.6959 | | 1.8191 | 3.07 | 840 | 1.6823 | | 1.795 | 3.14 | 860 | 1.6873 | | 1.7587 | 3.22 | 880 | 1.6850 | | 1.8091 | 3.29 | 900 | 1.6828 | | 1.7617 | 3.36 | 920 | 1.6860 | | 1.7933 | 3.43 | 940 | 1.6796 | | 1.8041 | 3.51 | 960 | 1.6805 | | 1.7596 | 3.58 | 980 | 1.6855 | | 1.7518 | 3.65 | 1000 | 1.6791 | | 1.7384 | 3.73 | 1020 | 1.6795 | | 1.7855 | 3.8 | 1040 | 1.6784 | | 1.7938 | 3.87 | 1060 | 1.6780 | | 1.7637 | 3.95 | 1080 | 1.6809 | | 1.7914 | 4.02 | 1100 | 1.6779 | | 1.7903 | 4.09 | 1120 | 1.6753 | | 1.7874 | 4.17 | 1140 | 1.6745 | | 1.7982 | 4.24 | 1160 | 1.6728 | | 1.7709 | 4.31 | 1180 | 1.6761 | | 1.7583 | 4.38 | 1200 | 1.6754 | | 1.778 | 4.46 | 1220 | 1.6739 | | 1.7526 | 4.53 | 1240 | 1.6746 | | 1.7713 | 4.6 | 1260 | 1.6723 | | 1.734 | 4.68 | 1280 | 1.6742 | | 1.7498 | 4.75 | 1300 | 1.6737 | | 1.751 | 4.82 | 1320 | 1.6730 | | 1.7562 | 4.9 | 1340 | 1.6739 | | 1.7549 | 4.97 | 1360 | 1.6740 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3