import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
MODEL_NAME = "UUFO-Aigis/Pico-OpenLAiNN-100M" #Replace 100M with 250M or 500M if you prefer those models. | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) | |
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME) | |
def generate_text(prompt, model, tokenizer, max_length=512, temperature=1, top_k=50, top_p=0.95): | |
inputs = tokenizer.encode(prompt, return_tensors="pt") | |
outputs = model.generate( | |
inputs, | |
max_length=max_length, | |
temperature=temperature, | |
top_k=top_k, | |
top_p=top_p, | |
do_sample=True | |
) | |
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return generated_text | |
def main(): | |
# Define your prompt | |
prompt = "According to all known laws of aviation, there is no way a bee should be able to fly." | |
generated_text = generate_text(prompt, model, tokenizer) | |
print(generated_text) | |
if __name__ == "__main__": | |
main() | |