bkershner commited on
Commit
7960fd0
1 Parent(s): 688b67d

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +28 -0
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: "mit"
3
+
4
+ widget:
5
+ - text: "Took the pill, 12 hours later my muscles started to really hurt, then my ribs started to burn so bad I couldn't breath."
6
+ ---
7
+
8
+ This model takes text (narrative of reasctions to medications) as input and returns a predicted severity score for the reaction (LABEL_1 is severe reaction). Please do NOT use for medical diagnosis.
9
+ Example usage:
10
+ ```python
11
+ import torch
12
+ import tensorflow as tf
13
+ from transformers import RobertaTokenizer, RobertaModel
14
+ from transformers import AutoModelForSequenceClassification
15
+ from transformers import TFAutoModelForSequenceClassification
16
+ from transformers import AutoTokenizer
17
+ tokenizer = AutoTokenizer.from_pretrained("paragon-analytics/ADRv1")
18
+ model = AutoModelForSequenceClassification.from_pretrained("paragon-analytics/ADRv1")
19
+ def adr_predict(x):
20
+ encoded_input = tokenizer(x, return_tensors='pt')
21
+ output = model(**encoded_input)
22
+ scores = output[0][0].detach().numpy()
23
+ scores = tf.nn.softmax(scores)
24
+ return scores.numpy()[1]
25
+ sentence = "I have severe pain."
26
+
27
+ adr_predict(sentence)
28
+ ```