ondfa commited on
Commit
cedf40b
1 Parent(s): 6c81f44

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +8 -3
README.md CHANGED
@@ -1,3 +1,8 @@
 
 
 
 
 
1
  # CZERT
2
  This repository keeps Czert-A model for the paper [Czert – Czech BERT-like Model for Language Representation
3
  ](https://arxiv.org/abs/2103.13031)
@@ -39,14 +44,14 @@ We evaluate our model on two sentence level tasks:
39
 
40
 
41
  <!-- tokenizer = BertTokenizerFast.from_pretrained(CZERT_MODEL_PATH, strip_accents=False)
42
- model = TFAlbertForSequenceClassification.from_pretrained(CZERT_MODEL_PATH, num_labels=1)
43
 
44
  or
45
 
46
  self.tokenizer = BertTokenizerFast.from_pretrained(CZERT_MODEL_PATH, strip_accents=False)
47
  self.model_encoder = AutoModelForSequenceClassification.from_pretrained(CZERT_MODEL_PATH, from_tf=True)
48
  -->
49
-
50
  ### Document Level Tasks
51
  We evaluate our model on one document level task
52
  * Multi-label Document Classification.
@@ -102,7 +107,7 @@ Comparison of F1 score achieved using pre-trained CZERT-A, CZERT-B, mBERT, Pavlo
102
 
103
  | | mBERT | Pavlov | Albert-random | Czert-A | Czert-B | dep-based | gold-dep |
104
  |:------:|:----------:|:----------:|:-------------:|:----------:|:----------:|:---------:|:--------:|
105
- | span | 78.547 ± 0.110 | 79.333 ± 0.080 | 51.365 ± 0.423 | 72.254 ± 0.172 | **81.861 ± 0.102** | \- | \- |
106
  | syntax | 90.226 ± 0.224 | 90.492 ± 0.040 | 80.747 ± 0.131 | 80.319 ± 0.054 | **91.462 ± 0.062** | 85.19 | 89.52 |
107
 
108
  SRL results – dep columns are evaluate with labelled F1 from CoNLL 2009 evaluation script, other columns are evaluated with span F1 score same as it was used for NER evaluation. For more information see [the paper](https://arxiv.org/abs/2103.13031).
 
1
+ ---
2
+ tags:
3
+ - cs
4
+ ---
5
+
6
  # CZERT
7
  This repository keeps Czert-A model for the paper [Czert – Czech BERT-like Model for Language Representation
8
  ](https://arxiv.org/abs/2103.13031)
 
44
 
45
 
46
  <!-- tokenizer = BertTokenizerFast.from_pretrained(CZERT_MODEL_PATH, strip_accents=False)
47
+ \tmodel = TFAlbertForSequenceClassification.from_pretrained(CZERT_MODEL_PATH, num_labels=1)
48
 
49
  or
50
 
51
  self.tokenizer = BertTokenizerFast.from_pretrained(CZERT_MODEL_PATH, strip_accents=False)
52
  self.model_encoder = AutoModelForSequenceClassification.from_pretrained(CZERT_MODEL_PATH, from_tf=True)
53
  -->
54
+ \t
55
  ### Document Level Tasks
56
  We evaluate our model on one document level task
57
  * Multi-label Document Classification.
 
107
 
108
  | | mBERT | Pavlov | Albert-random | Czert-A | Czert-B | dep-based | gold-dep |
109
  |:------:|:----------:|:----------:|:-------------:|:----------:|:----------:|:---------:|:--------:|
110
+ | span | 78.547 ± 0.110 | 79.333 ± 0.080 | 51.365 ± 0.423 | 72.254 ± 0.172 | **81.861 ± 0.102** | \\- | \\- |
111
  | syntax | 90.226 ± 0.224 | 90.492 ± 0.040 | 80.747 ± 0.131 | 80.319 ± 0.054 | **91.462 ± 0.062** | 85.19 | 89.52 |
112
 
113
  SRL results – dep columns are evaluate with labelled F1 from CoNLL 2009 evaluation script, other columns are evaluated with span F1 score same as it was used for NER evaluation. For more information see [the paper](https://arxiv.org/abs/2103.13031).