{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa50f1928c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa50f192950>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa50f1929e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa50f192a70>", "_build": "<function ActorCriticPolicy._build at 0x7fa50f192b00>", "forward": "<function ActorCriticPolicy.forward at 0x7fa50f192b90>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fa50f192c20>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa50f192cb0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fa50f192d40>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa50f192dd0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa50f192e60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa50f192ef0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fa50f33f340>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1694948547680092951, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIA8Zb2F66q5sCV9upUkw7R//Pu6iN6XOQAAgD8AAIA/M9MVO8MFfrpSDaW7JklYOMuOFLuF8rg3AACAPwAAgD/zn5g9FMChumwLLDqkfSk1PV6+OgrURbkAAIA/AACAP3oXQ76PKiw+Es+CPoliVb5E2Xc8xrfKPAAAAAAAAAAAU3q7PoGUXz8ySaW83c2ovs9R0T1tbZO8AAAAAAAAAAAzHOW81/MhuQZFdrq8SDE2aowsus0okjkAAIA/AACAP/NSsz3hkJ+67UoZu/pAdjcZrPY5BVo9OgAAgD8AAIA/ZsJjvCmwBrpDw0O7LIdvN8bVSjma+iE6AACAPwAAgD8ztBm9XHMOurb4YTncvk40HY5POzNMhLgAAIA/AACAP5q/KTz25Gy6QP7tO3sLsDc938A6RgafNgAAgD8AAIA/mtCNvMHhyT1ndj89Icc0vmTn+7krDAc9AAAAAAAAAAAzUbc9KXwfuuaypjuiMJW0P/kxO6hNWrMAAAAAAACAP5qHbT0URoK6N91BuqWYUjbMtwe7w9dhOQAAgD8AAIA/TU89PSkAcboaHmi5njxRtCQgZjr284c4AACAPwAAgD+Ae0+99iRFui4pe7lHFIq0otVZOQshlDgAAIA/AACAP2b9zDwfhbe5JrycO+t0lzbkXCM7iNq2ugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGRtS4Wk8A+MAWyUTegDjAF0lEdArd2mMl1KXnV9lChoBkdAYSYlv60pmWgHTegDaAhHQK3eWIrvsqt1fZQoaAZHQDiKpFTefqZoB00SAWgIR0Ct3nbaIvaldX2UKGgGR0BnEE8/2TPjaAdN6ANoCEdArd7GMqBmPHV9lChoBkdAZFD1pTMq0GgHTegDaAhHQK3hnsC1Z1V1fZQoaAZHQGQXbo0Q9RtoB03oA2gIR0Ct4eBNEgGKdX2UKGgGR0Bjiv+l0o0AaAdN6ANoCEdAreVCbONYKnV9lChoBkdAYjXy1/lQuWgHTegDaAhHQK3mmaNuLrJ1fZQoaAZHQGKYUI9kjHJoB03oA2gIR0Ct6EwAlv61dX2UKGgGR0BnAlJUYKplaAdN6ANoCEdArfuCXdCVr3V9lChoBkdAYZifU4JeFGgHTegDaAhHQK37rQJokAx1fZQoaAZHQGWS22PT5O9oB03oA2gIR0Ct+9fJV81GdX2UKGgGR0BmvD3225QQaAdN6ANoCEdArgDYO4G2TnV9lChoBkdAXtEt6HCXQmgHTegDaAhHQK4BCDZlFtt1fZQoaAZHQF+Zaq0dBB1oB03oA2gIR0CuAdRJ2+wldX2UKGgGR0BlVzWkJrtWaAdN6ANoCEdArgQDXUYsNHV9lChoBkdAZcdhKlHjImgHTegDaAhHQK4HTI3BHkN1fZQoaAZHQGCH09QoCuFoB03oA2gIR0CuB/0gr6LwdX2UKGgGR0BjqdnM+u/2aAdN6ANoCEdArggdHavicXV9lChoBkdAYcGnE2pAEGgHTegDaAhHQK4Ia6DoQnR1fZQoaAZHQGo8mlqJuVJoB02YAWgIR0CuCHNDD0lJdX2UKGgGR0BryCdUbT+eaAdN/AJoCEdArgmTvkRzzXV9lChoBkdAZdCxt52Qn2gHTegDaAhHQK4La5lOGj91fZQoaAZHQGBErW7OE/VoB03oA2gIR0CuC7wo9cKPdX2UKGgGR0BeqIsunMt9aAdN6ANoCEdArhBrLW7OFHV9lChoBkdAQczA31jAi2gHTRMBaAhHQK4SGrJ8v251fZQoaAZHQGERnTAnDzloB03oA2gIR0CuFSi6H0sfdX2UKGgGR0BcofaYeDFqaAdN6ANoCEdAriZMt/WlM3V9lChoBkdAYJCmP5pJw2gHTegDaAhHQK4mfN1QqI91fZQoaAZHQGaqP+fh/AloB03oA2gIR0CuLgEH2RJVdX2UKGgGR0BcXeR5kbxWaAdN6ANoCEdAri5ZJsfq5nV9lChoBkdAYjFNqxkd3mgHTegDaAhHQK4vrMFlkH51fZQoaAZHQFarBIWgvlFoB03oA2gIR0CuMy7tzCDVdX2UKGgGR0BKA2xptaZAaAdNGwFoCEdArjO9qveP73V9lChoBkdAZEgCpWFN+WgHTegDaAhHQK423FAE+xJ1fZQoaAZHQGNk08eS0ShoB03oA2gIR0CuN5LjYI0JdX2UKGgGR0BjW6WLP2PDaAdN6ANoCEdArjeycwxnF3V9lChoBkdARaBUPxx1gmgHS+5oCEdArjfqiEg4fnV9lChoBkdAYLsDwpe/pWgHTegDaAhHQK44Bf8/D+B1fZQoaAZHQFxDOfdyksVoB03oA2gIR0CuOShgeA/cdX2UKGgGR0BZ4RcAzYVZaAdN6ANoCEdArjqTIcR15nV9lChoBkdAXodfx+az/2gHTegDaAhHQK46zHeaa1F1fZQoaAZHQGI3Q1rIo3JoB03oA2gIR0CuPeybx3FDdX2UKGgGR0Bip34TK1XvaAdN6ANoCEdArj75q7Ack3V9lChoBkdAZF8sPrfLtGgHTegDaAhHQK5Axn3+MqB1fZQoaAZHQDLNiKBNEgJoB00hAWgIR0CuUtGqo60ZdX2UKGgGR0BeMevMbFS9aAdN6ANoCEdArlNtLOAy23V9lChoBkdAYMDevZAY52gHTegDaAhHQK5YtbY9Pk91fZQoaAZHQGTI6QV9F4NoB03oA2gIR0CuWbqxC6YmdX2UKGgGR0A+IRQJokAxaAdL+mgIR0CuWyN34bjtdX2UKGgGR0BlHKkGiYb9aAdN6ANoCEdArlvy88La3HV9lChoBkdAX46uA7Ppp2gHTegDaAhHQK5cTAWznih1fZQoaAZHQGNVMsg+yJNoB03oA2gIR0CuXvSAYpDvdX2UKGgGR0Bk1Z0EHMUzaAdN6ANoCEdArl+X9BKL9HV9lChoBkdAW/j51vES/WgHTegDaAhHQK5ftUR3/xV1fZQoaAZHQGNzIikfs/poB03oA2gIR0CuX+onSfDldX2UKGgGR0BkQp7zCk44aAdN6ANoCEdArmAD5sTFl3V9lChoBkdAYkCZH/cWTGgHTegDaAhHQK5hCgZjx1B1fZQoaAZHQFyz7dSEUTNoB03oA2gIR0CuYmdu5z5odX2UKGgGR0BhRXd9Dx9YaAdN6ANoCEdArmKgcJdB0XV9lChoBkdAYJ9Y4hllLGgHTegDaAhHQK5l/78ejmF1fZQoaAZHQGQel2FFlTZoB03oA2gIR0CuauAeq7yydX2UKGgGR0BiB9hoduHfaAdN6ANoCEdArn3bHS4OMHV9lChoBkdAZMw63AmAsmgHTegDaAhHQK6GPoM8YAN1fZQoaAZHQF+3uuieumtoB03oA2gIR0CuiCMMZxaQdX2UKGgGR0BltCYG+sYEaAdN6ANoCEdArorHA9FF2HV9lChoBkdAY7WR28qWkmgHTegDaAhHQK6MPv60pmV1fZQoaAZHQFX9f9P1tfpoB03oA2gIR0CujN8R15jZdX2UKGgGR0BZvRdpqREGaAdN6ANoCEdArpD8gMc6vXV9lChoBkdAW4YJhOP/72gHTegDaAhHQK6RvxYq5LB1fZQoaAZHQGMdEWZZ0S1oB03oA2gIR0CukeAtWdVedX2UKGgGR0BZOOKCQLeAaAdN6ANoCEdArpIf2f02+HV9lChoBkdAXgWyLQ5WBGgHTegDaAhHQK6SPvHcUM51fZQoaAZHQGSy78Nx2jhoB03oA2gIR0Cuk4XT/hl2dX2UKGgGR0BdkTmfXf65aAdN6ANoCEdArpUEnZ00WXV9lChoBkdAV+Bul41P32gHTegDaAhHQK6VPY6nzhB1fZQoaAZHQETH+vQnhKloB00FAWgIR0CulW1X/5tWdX2UKGgGR0BjF7Q3PzFuaAdN6ANoCEdArphZrnDBM3V9lChoBkdAXHCMBIWgvmgHTegDaAhHQK6bf974SHx1fZQoaAZHQDQ1OYYzi0hoB0vSaAhHQK6e+iW3Sa51fZQoaAZHQFqe5FgDzRRoB03oA2gIR0Curn5Tho/SdX2UKGgGR0Beqw62fChwaAdN6ANoCEdArrTEIE8q4HV9lChoBkdAZsnKIznA7GgHTegDaAhHQK61122XsxB1fZQoaAZHQGHDQaaTfSBoB03oA2gIR0Cut0jeCTUzdX2UKGgGR0BdZKtT1kDqaAdN6ANoCEdArrhwNb1RL3V9lChoBkdAYPXpPhybQWgHTegDaAhHQK67LIq9XcR1fZQoaAZHQGKlUth/iHZoB03oA2gIR0Cuu86KUFB6dX2UKGgGR0Bmp2mrKeTWaAdN6ANoCEdArrvp7mdRSHV9lChoBkdAZCX6qKgqVmgHTegDaAhHQK68II5YHPh1fZQoaAZHQF1LfVI7NjdoB03oA2gIR0CuvDoi1RcedX2UKGgGR0Av0tI065oXaAdNDAFoCEdArryqGxlg+nV9lChoBkdAXCl3Tuv2XmgHTegDaAhHQK69LTNMXad1fZQoaAZHQFzMxZdOZb9oB03oA2gIR0CuvmyPU8V6dX2UKGgGR0Bg0UMXrMTwaAdN6ANoCEdArr6eB6KLsXV9lChoBkdAYjNH7P6bfGgHTegDaAhHQK6+xoAXEZR1fZQoaAZHQEsXck+otMBoB0vuaAhHQK7BUKxcE/11fZQoaAZHQCfrfFaSs8xoB0vpaAhHQK7Br7hNucd1fZQoaAZHQF5/lQdjoZBoB03oA2gIR0CuxLpu/DcedX2UKGgGR0BJR8cMmWt2aAdL8mgIR0CuxSe54GD+dX2UKGgGR0Bh8QrrgOz6aAdN6ANoCEdArsizhky1u3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |