--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: 25-distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: default split: train[:25%] args: default metrics: - name: Accuracy type: accuracy value: 0.96 --- # 25-distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.1955 - Accuracy: 0.96 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.3123 | 1.0 | 57 | 1.3463 | 0.56 | | 0.6113 | 2.0 | 114 | 0.5379 | 0.96 | | 0.1295 | 3.0 | 171 | 0.2719 | 0.96 | | 0.2878 | 4.0 | 228 | 0.0979 | 0.96 | | 0.0168 | 5.0 | 285 | 0.1527 | 0.96 | | 0.0104 | 6.0 | 342 | 0.2320 | 0.96 | | 0.0067 | 7.0 | 399 | 0.1798 | 0.96 | | 0.0051 | 8.0 | 456 | 0.1827 | 0.96 | | 0.0041 | 9.0 | 513 | 0.1918 | 0.96 | | 0.0055 | 10.0 | 570 | 0.1955 | 0.96 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2