--- base_model: NeverSleep/MiquMaid-v2-70B tags: - generated_from_trainer model-index: - name: out results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.0` ```yaml base_model: NeverSleep/MiquMaid-v2-70B model_type: LlamaForCausalLM tokenizer_type: LlamaTokenizer is_llama_derived_model: true load_in_8bit: false load_in_4bit: true strict: false rl: dpo datasets: - path: NobodyExistsOnTheInternet/ToxicDPOqa split: train type: chatml.alpaca - path: Undi95/toxic-dpo-v0.1-NoWarning split: train type: chatml.alpaca2 dataset_prepared_path: val_set_size: 0.0 output_dir: ./out adapter: qlora lora_model_dir: sequence_len: 1024 sample_packing: false pad_to_sequence_len: true lora_r: 16 lora_alpha: 8 lora_dropout: 0.05 lora_target_modules: lora_target_linear: true lora_fan_in_fan_out: wandb_project: MiquMaidDPO wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 4 micro_batch_size: 3 num_epochs: 3 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.000001 train_on_inputs: false group_by_length: false bf16: true fp16: false tf32: true gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 10 eval_steps: eval_table_size: saves_per_epoch: 1 debug: deepspeed: ./axolotl/deepspeed_configs/zero2.json weight_decay: 0.0 fsdp: fsdp_config: special_tokens: bos_token: "" eos_token: "" unk_token: "" ```

# out This model is a fine-tuned version of [NeverSleep/MiquMaid-v2-70B](https://huggingface.co/NeverSleep/MiquMaid-v2-70B) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 3 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 3 - gradient_accumulation_steps: 4 - total_train_batch_size: 36 - total_eval_batch_size: 24 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 598 ### Training results ### Framework versions - Transformers 4.38.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.16.1 - Tokenizers 0.15.0