|
""" HelpingAI model configuration""" |
|
|
|
from transformers import PretrainedConfig |
|
from transformers.utils import logging |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class HelpingAIConfig(PretrainedConfig): |
|
model_type = "HelpingAI" |
|
keys_to_ignore_at_inference = ["past_key_values"] |
|
|
|
def __init__( |
|
self, |
|
vocab_size=50281, |
|
hidden_size=2560, |
|
num_hidden_layers=32, |
|
num_attention_heads=32, |
|
head_dim=256, |
|
num_local_experts=8, |
|
num_experts_per_tok=2, |
|
intermediate_size=6912, |
|
hidden_act="silu", |
|
hidden_dropout=0.0, |
|
attention_dropout=0.0, |
|
classifier_dropout=0.1, |
|
max_position_embeddings=4096, |
|
initializer_range=0.02, |
|
rms_norm_eps=1e-6, |
|
layer_norm_eps=1e-5, |
|
use_cache=False, |
|
bos_token_id=50278, |
|
eos_token_id=50279, |
|
pad_token_id=50279, |
|
tie_word_embeddings=False, |
|
rope_pct=0.25, |
|
rope_theta=10000, |
|
partial_rotary_factor=0.25, |
|
use_qkv_bias=False, |
|
output_router_logits=False, |
|
router_aux_loss_coef=0.02, |
|
**kwargs, |
|
): |
|
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) |
|
self.vocab_size = vocab_size |
|
self.max_position_embeddings = max_position_embeddings |
|
self.hidden_size = hidden_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.head_dim = head_dim |
|
self.num_local_experts = num_local_experts |
|
self.num_experts_per_tok = num_experts_per_tok |
|
self.intermediate_size = intermediate_size |
|
self.hidden_act = hidden_act |
|
self.hidden_dropout = hidden_dropout |
|
self.attention_dropout = attention_dropout |
|
self.classifier_dropout = classifier_dropout |
|
self.initializer_range = initializer_range |
|
self.rms_norm_eps = rms_norm_eps |
|
self.layer_norm_eps = layer_norm_eps |
|
self.use_cache = use_cache |
|
self.tie_word_embeddings = tie_word_embeddings |
|
self.rope_pct = rope_pct |
|
self.rope_theta = rope_theta |
|
self.partial_rotary_factor = partial_rotary_factor |
|
self.use_qkv_bias = use_qkv_bias |
|
self.output_router_logits = output_router_logits |
|
self.router_aux_loss_coef = router_aux_loss_coef |
|
|
|
if self.hidden_size % self.num_attention_heads != 0: |
|
raise ValueError( |
|
"The hidden size is not divisble by the number of attention heads! Make sure to update them!" |
|
) |
|
|
|
|
|
def _rope_scaling_validation(self): |
|
""" |
|
Validate the `rope_scaling` configuration. |
|
""" |
|
if self.rope_scaling is None: |
|
return |
|
|
|
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2: |
|
raise ValueError( |
|
"`rope_scaling` must be a dictionary with two fields, `type` and `factor`, " f"got {self.rope_scaling}" |
|
) |
|
rope_scaling_type = self.rope_scaling.get("type", None) |
|
rope_scaling_factor = self.rope_scaling.get("factor", None) |
|
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: |
|
raise ValueError( |
|
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" |
|
) |
|
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0: |
|
raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}") |