sino
commited on
Commit
•
ff4fdee
1
Parent(s):
354c8fa
Upload 4 files
Browse files- LMdecoder.py +169 -0
- htsat.py +1249 -0
- mae_vit.py +303 -0
- vision_transformer.py +176 -0
LMdecoder.py
ADDED
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
from doctest import ELLIPSIS_MARKER
|
3 |
+
from functools import partial
|
4 |
+
import json
|
5 |
+
from turtle import forward, shape
|
6 |
+
import einops
|
7 |
+
import torch
|
8 |
+
from torch import nn
|
9 |
+
|
10 |
+
from mmcls.models.backbones.vision_transformer import TransformerEncoderLayer
|
11 |
+
from transformers import GPT2Model, GPT2Config,GPT2LMHeadModel,GPTNeoForCausalLM,GPTNeoModel, \
|
12 |
+
BartModel, BartConfig, BartForCausalLM, BertForMaskedLM, AutoConfig, AutoModel, AutoModelForCausalLM, AutoTokenizer
|
13 |
+
from transformers import BitsAndBytesConfig
|
14 |
+
|
15 |
+
from peft import prepare_model_for_kbit_training
|
16 |
+
from peft import LoraConfig
|
17 |
+
from peft import get_peft_model
|
18 |
+
|
19 |
+
|
20 |
+
from mmcv.cnn import build_norm_layer
|
21 |
+
from mmcv.runner import BaseModule
|
22 |
+
import math
|
23 |
+
from ipdb import set_trace
|
24 |
+
|
25 |
+
class mixEmbed(nn.Module):
|
26 |
+
def __init__(self, lm_embed: nn.Embedding , audio_embeddings, *args, **kwargs) -> None:
|
27 |
+
super().__init__(*args, **kwargs)
|
28 |
+
self.lm_embed = lm_embed
|
29 |
+
self.audio_embeddings = audio_embeddings # ugly but works without modifying raw model codes
|
30 |
+
|
31 |
+
def forward(self, input_ids):
|
32 |
+
text_ids = torch.clamp(input_ids.clone(), 0).long()
|
33 |
+
|
34 |
+
au_ids = torch.clamp(-(input_ids.clone() + 1), 0).long()
|
35 |
+
text_embeds = self.lm_embed(text_ids)
|
36 |
+
au_embeds = self.audio_embeddings[au_ids]
|
37 |
+
with torch.no_grad():
|
38 |
+
embed_mask = (input_ids > 0)
|
39 |
+
mix_embeds = au_embeds.clone()
|
40 |
+
mix_embeds[embed_mask] = text_embeds[embed_mask]
|
41 |
+
return mix_embeds
|
42 |
+
|
43 |
+
|
44 |
+
class LMDecoder(nn.Module):
|
45 |
+
def __init__(self,
|
46 |
+
# num_patches=196,
|
47 |
+
img_size=(80,512),
|
48 |
+
patch_size:int=16,
|
49 |
+
in_chans:int=3,
|
50 |
+
embed_dim=1024, # encoder embed dim
|
51 |
+
decoder_embed_dim=512,
|
52 |
+
norm_cfg=dict(type='LN', eps=1e-6),
|
53 |
+
# patch_resolution=14,
|
54 |
+
decoder_type='gpt2',
|
55 |
+
freeze_decoder=True,
|
56 |
+
additional_layer:int=0,
|
57 |
+
):
|
58 |
+
super().__init__()
|
59 |
+
self.decoder_type = decoder_type
|
60 |
+
self.load_lm()
|
61 |
+
|
62 |
+
self.lm_embed = self.lm.get_input_embeddings()
|
63 |
+
try:
|
64 |
+
self.lm_pos_embed = self.lm.get_position_embeddings()
|
65 |
+
except NotImplementedError:
|
66 |
+
self.lm_pos_embed = None # rotrary embeds
|
67 |
+
|
68 |
+
|
69 |
+
if hasattr(self.lm,'embed_dim'):
|
70 |
+
self.embed_dim = self.lm.embed_dim
|
71 |
+
else:
|
72 |
+
self.embed_dim = decoder_embed_dim
|
73 |
+
|
74 |
+
# self.asLM = asLM # if generates tokens rather than hidden states
|
75 |
+
# if self.asLM: # TODO: 当年写这个是为啥?
|
76 |
+
# self.lm.set_output_embeddings(nn.Linear(self.embed_dim, self.self.LMconfig.vocab_size, bias=False))
|
77 |
+
self.freeze_decoder = False
|
78 |
+
if True:
|
79 |
+
for para in self.lm.parameters():
|
80 |
+
para.requires_grad = False
|
81 |
+
|
82 |
+
def load_lm(self):
|
83 |
+
## ---------------------LM setting----------------------
|
84 |
+
self.tokenizer = AutoTokenizer.from_pretrained(self.decoder_type)
|
85 |
+
if self.tokenizer.pad_token is None:
|
86 |
+
self.tokenizer.pad_token = self.tokenizer.eos_token
|
87 |
+
self.LMconfig = AutoConfig.from_pretrained(self.decoder_type, trust_remote_code=True )
|
88 |
+
self.lm = AutoModelForCausalLM.from_pretrained(self.decoder_type, trust_remote_code=True)
|
89 |
+
|
90 |
+
|
91 |
+
def forward(self, input_ids, flatten_embs, attention_mask, labels, **kwargs):
|
92 |
+
mix_embed = mixEmbed(self.lm_embed, flatten_embs)
|
93 |
+
self.lm.set_input_embeddings(mix_embed) # modification of the lm embed
|
94 |
+
output = self.lm(input_ids=input_ids, attention_mask=attention_mask, labels=labels, output_hidden_states=True, **kwargs)
|
95 |
+
self.lm.set_input_embeddings(self.lm_embed) # modification of the lm embed
|
96 |
+
return output
|
97 |
+
|
98 |
+
def generate(self, input_ids, flatten_embs):
|
99 |
+
mix_embed = mixEmbed(self.lm_embed, flatten_embs)
|
100 |
+
self.lm.set_input_embeddings(mix_embed) # modification of the lm embed
|
101 |
+
outputs = self.lm.generate(input_ids=input_ids, max_new_tokens=256, use_cache=False)
|
102 |
+
# outputs = self.lm.generate(input_ids=input_ids,
|
103 |
+
# max_new_tokens=1024,
|
104 |
+
# do_sample=True,
|
105 |
+
# temperature=1.5,
|
106 |
+
# num_beams=1,
|
107 |
+
# top_p=0.9,
|
108 |
+
# top_k=3,
|
109 |
+
# use_cache=False)
|
110 |
+
self.lm.set_input_embeddings(self.lm_embed) # modification of the lm embed
|
111 |
+
return outputs
|
112 |
+
'''
|
113 |
+
## infer params
|
114 |
+
max_input_tokens: 40
|
115 |
+
batch_size_test: 16
|
116 |
+
max_new_tokens: 64
|
117 |
+
min_length: 2
|
118 |
+
num_beams: 5
|
119 |
+
length_penalty: -2.0
|
120 |
+
top_p: 0.9
|
121 |
+
top_k: 3
|
122 |
+
no_repeat_ngram_size: 2
|
123 |
+
apply_lemmatizer: False
|
124 |
+
use_nucleus_sampling: True
|
125 |
+
'''
|
126 |
+
|
127 |
+
class LMDecoder_qlora(LMDecoder):
|
128 |
+
def __init__(self,
|
129 |
+
# num_patches=196,
|
130 |
+
img_size=(80,512),
|
131 |
+
patch_size:int=16,
|
132 |
+
in_chans:int=3,
|
133 |
+
embed_dim=1024, # encoder embed dim
|
134 |
+
decoder_embed_dim=512,
|
135 |
+
norm_cfg=dict(type='LN', eps=1e-6),
|
136 |
+
# patch_resolution=14,
|
137 |
+
decoder_type='gpt2',
|
138 |
+
freeze_decoder=True,
|
139 |
+
additional_layer:int=0,
|
140 |
+
):
|
141 |
+
super().__init__( img_size, patch_size, in_chans, embed_dim, decoder_embed_dim, norm_cfg, decoder_type, freeze_decoder, additional_layer)
|
142 |
+
|
143 |
+
def load_lm(self):
|
144 |
+
self.tokenizer = AutoTokenizer.from_pretrained(self.decoder_type)
|
145 |
+
self.LMconfig = AutoConfig.from_pretrained(self.decoder_type, trust_remote_code=True )
|
146 |
+
double_quant_config = BitsAndBytesConfig(
|
147 |
+
load_in_4bit=True,
|
148 |
+
bnb_4bit_use_double_quant=True,
|
149 |
+
)
|
150 |
+
model = AutoModelForCausalLM.from_pretrained(self.decoder_type,
|
151 |
+
# device_map='auto', # if remove, can not add lora
|
152 |
+
# load_in_4bit=True,# if remove, can not add lora
|
153 |
+
# # torch_dtype=torch.bfloat16,
|
154 |
+
# quantization_config=double_quant_config, # if remove, can not add lora
|
155 |
+
trust_remote_code=True )
|
156 |
+
|
157 |
+
model.gradient_checkpointing_enable()
|
158 |
+
model = prepare_model_for_kbit_training(model)
|
159 |
+
lora_config = LoraConfig(
|
160 |
+
r=8,
|
161 |
+
lora_alpha=32,
|
162 |
+
target_modules=["query_key_value"],
|
163 |
+
lora_dropout=0.05,
|
164 |
+
bias="none",
|
165 |
+
task_type="CAUSAL_LM"
|
166 |
+
)
|
167 |
+
|
168 |
+
self.lm = get_peft_model(model, lora_config)
|
169 |
+
self.lm.print_trainable_parameters()
|
htsat.py
ADDED
@@ -0,0 +1,1249 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Ke Chen
|
2 |
+
# knutchen@ucsd.edu
|
3 |
+
# HTS-AT: A HIERARCHICAL TOKEN-SEMANTIC AUDIO TRANSFORMER FOR SOUND CLASSIFICATION AND DETECTION
|
4 |
+
# Some layers designed on the model
|
5 |
+
# below codes are based and referred from https://github.com/microsoft/Swin-Transformer
|
6 |
+
# Swin Transformer for Computer Vision: https://arxiv.org/pdf/2103.14030.pdf
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
import torch.nn.functional as F
|
11 |
+
from itertools import repeat
|
12 |
+
import collections.abc
|
13 |
+
import math
|
14 |
+
import warnings
|
15 |
+
|
16 |
+
from torch.nn.init import _calculate_fan_in_and_fan_out
|
17 |
+
import torch.utils.checkpoint as checkpoint
|
18 |
+
|
19 |
+
import random
|
20 |
+
|
21 |
+
from torchlibrosa.stft import Spectrogram, LogmelFilterBank
|
22 |
+
from torchlibrosa.augmentation import SpecAugmentation
|
23 |
+
from einops import rearrange
|
24 |
+
from itertools import repeat
|
25 |
+
# from .utils import interpolate
|
26 |
+
|
27 |
+
# from .feature_fusion import iAFF, AFF, DAF
|
28 |
+
|
29 |
+
|
30 |
+
'''
|
31 |
+
Feature Fusion for Varible-Length Data Processing
|
32 |
+
AFF/iAFF is referred and modified from https://github.com/YimianDai/open-aff/blob/master/aff_pytorch/aff_net/fusion.py
|
33 |
+
According to the paper: Yimian Dai et al, Attentional Feature Fusion, IEEE Winter Conference on Applications of Computer Vision, WACV 2021
|
34 |
+
'''
|
35 |
+
|
36 |
+
class DAF(nn.Module):
|
37 |
+
'''
|
38 |
+
直接相加 DirectAddFuse
|
39 |
+
'''
|
40 |
+
|
41 |
+
def __init__(self):
|
42 |
+
super(DAF, self).__init__()
|
43 |
+
|
44 |
+
def forward(self, x, residual):
|
45 |
+
return x + residual
|
46 |
+
|
47 |
+
|
48 |
+
class iAFF(nn.Module):
|
49 |
+
'''
|
50 |
+
多特征融合 iAFF
|
51 |
+
'''
|
52 |
+
|
53 |
+
def __init__(self, channels=64, r=4, type='2D'):
|
54 |
+
super(iAFF, self).__init__()
|
55 |
+
inter_channels = int(channels // r)
|
56 |
+
|
57 |
+
if type == '1D':
|
58 |
+
# 本地注意力
|
59 |
+
self.local_att = nn.Sequential(
|
60 |
+
nn.Conv1d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
|
61 |
+
nn.BatchNorm1d(inter_channels),
|
62 |
+
nn.ReLU(inplace=True),
|
63 |
+
nn.Conv1d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
|
64 |
+
nn.BatchNorm1d(channels),
|
65 |
+
)
|
66 |
+
|
67 |
+
# 全局注意力
|
68 |
+
self.global_att = nn.Sequential(
|
69 |
+
nn.AdaptiveAvgPool1d(1),
|
70 |
+
nn.Conv1d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
|
71 |
+
nn.BatchNorm1d(inter_channels),
|
72 |
+
nn.ReLU(inplace=True),
|
73 |
+
nn.Conv1d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
|
74 |
+
nn.BatchNorm1d(channels),
|
75 |
+
)
|
76 |
+
|
77 |
+
# 第二次本地注意力
|
78 |
+
self.local_att2 = nn.Sequential(
|
79 |
+
nn.Conv1d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
|
80 |
+
nn.BatchNorm1d(inter_channels),
|
81 |
+
nn.ReLU(inplace=True),
|
82 |
+
nn.Conv1d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
|
83 |
+
nn.BatchNorm1d(channels),
|
84 |
+
)
|
85 |
+
# 第二次全局注意力
|
86 |
+
self.global_att2 = nn.Sequential(
|
87 |
+
nn.AdaptiveAvgPool1d(1),
|
88 |
+
nn.Conv1d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
|
89 |
+
nn.BatchNorm1d(inter_channels),
|
90 |
+
nn.ReLU(inplace=True),
|
91 |
+
nn.Conv1d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
|
92 |
+
nn.BatchNorm1d(channels),
|
93 |
+
)
|
94 |
+
elif type == '2D':
|
95 |
+
# 本地注意力
|
96 |
+
self.local_att = nn.Sequential(
|
97 |
+
nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
|
98 |
+
nn.BatchNorm2d(inter_channels),
|
99 |
+
nn.ReLU(inplace=True),
|
100 |
+
nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
|
101 |
+
nn.BatchNorm2d(channels),
|
102 |
+
)
|
103 |
+
|
104 |
+
# 全局注意力
|
105 |
+
self.global_att = nn.Sequential(
|
106 |
+
nn.AdaptiveAvgPool2d(1),
|
107 |
+
nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
|
108 |
+
nn.BatchNorm2d(inter_channels),
|
109 |
+
nn.ReLU(inplace=True),
|
110 |
+
nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
|
111 |
+
nn.BatchNorm2d(channels),
|
112 |
+
)
|
113 |
+
|
114 |
+
# 第二次本地注意力
|
115 |
+
self.local_att2 = nn.Sequential(
|
116 |
+
nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
|
117 |
+
nn.BatchNorm2d(inter_channels),
|
118 |
+
nn.ReLU(inplace=True),
|
119 |
+
nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
|
120 |
+
nn.BatchNorm2d(channels),
|
121 |
+
)
|
122 |
+
# 第二次全局注意力
|
123 |
+
self.global_att2 = nn.Sequential(
|
124 |
+
nn.AdaptiveAvgPool2d(1),
|
125 |
+
nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
|
126 |
+
nn.BatchNorm2d(inter_channels),
|
127 |
+
nn.ReLU(inplace=True),
|
128 |
+
nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
|
129 |
+
nn.BatchNorm2d(channels),
|
130 |
+
)
|
131 |
+
else:
|
132 |
+
raise f'the type is not supported'
|
133 |
+
|
134 |
+
self.sigmoid = nn.Sigmoid()
|
135 |
+
|
136 |
+
def forward(self, x, residual):
|
137 |
+
flag = False
|
138 |
+
xa = x + residual
|
139 |
+
if xa.size(0) == 1:
|
140 |
+
xa = torch.cat([xa,xa],dim=0)
|
141 |
+
flag = True
|
142 |
+
xl = self.local_att(xa)
|
143 |
+
xg = self.global_att(xa)
|
144 |
+
xlg = xl + xg
|
145 |
+
wei = self.sigmoid(xlg)
|
146 |
+
xi = x * wei + residual * (1 - wei)
|
147 |
+
|
148 |
+
xl2 = self.local_att2(xi)
|
149 |
+
xg2 = self.global_att(xi)
|
150 |
+
xlg2 = xl2 + xg2
|
151 |
+
wei2 = self.sigmoid(xlg2)
|
152 |
+
xo = x * wei2 + residual * (1 - wei2)
|
153 |
+
if flag:
|
154 |
+
xo = xo[0].unsqueeze(0)
|
155 |
+
return xo
|
156 |
+
|
157 |
+
|
158 |
+
class AFF(nn.Module):
|
159 |
+
'''
|
160 |
+
多特征融合 AFF
|
161 |
+
'''
|
162 |
+
|
163 |
+
def __init__(self, channels=64, r=4, type='2D'):
|
164 |
+
super(AFF, self).__init__()
|
165 |
+
inter_channels = int(channels // r)
|
166 |
+
|
167 |
+
if type == '1D':
|
168 |
+
self.local_att = nn.Sequential(
|
169 |
+
nn.Conv1d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
|
170 |
+
nn.BatchNorm1d(inter_channels),
|
171 |
+
nn.ReLU(inplace=True),
|
172 |
+
nn.Conv1d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
|
173 |
+
nn.BatchNorm1d(channels),
|
174 |
+
)
|
175 |
+
self.global_att = nn.Sequential(
|
176 |
+
nn.AdaptiveAvgPool1d(1),
|
177 |
+
nn.Conv1d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
|
178 |
+
nn.BatchNorm1d(inter_channels),
|
179 |
+
nn.ReLU(inplace=True),
|
180 |
+
nn.Conv1d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
|
181 |
+
nn.BatchNorm1d(channels),
|
182 |
+
)
|
183 |
+
elif type == '2D':
|
184 |
+
self.local_att = nn.Sequential(
|
185 |
+
nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
|
186 |
+
nn.BatchNorm2d(inter_channels),
|
187 |
+
nn.ReLU(inplace=True),
|
188 |
+
nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
|
189 |
+
nn.BatchNorm2d(channels),
|
190 |
+
)
|
191 |
+
self.global_att = nn.Sequential(
|
192 |
+
nn.AdaptiveAvgPool2d(1),
|
193 |
+
nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
|
194 |
+
nn.BatchNorm2d(inter_channels),
|
195 |
+
nn.ReLU(inplace=True),
|
196 |
+
nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
|
197 |
+
nn.BatchNorm2d(channels),
|
198 |
+
)
|
199 |
+
else:
|
200 |
+
raise f'the type is not supported.'
|
201 |
+
|
202 |
+
self.sigmoid = nn.Sigmoid()
|
203 |
+
|
204 |
+
def forward(self, x, residual):
|
205 |
+
flag = False
|
206 |
+
xa = x + residual
|
207 |
+
if xa.size(0) == 1:
|
208 |
+
xa = torch.cat([xa,xa],dim=0)
|
209 |
+
flag = True
|
210 |
+
xl = self.local_att(xa)
|
211 |
+
xg = self.global_att(xa)
|
212 |
+
xlg = xl + xg
|
213 |
+
wei = self.sigmoid(xlg)
|
214 |
+
xo = 2 * x * wei + 2 * residual * (1 - wei)
|
215 |
+
if flag:
|
216 |
+
xo = xo[0].unsqueeze(0)
|
217 |
+
return xo
|
218 |
+
|
219 |
+
|
220 |
+
# .utils
|
221 |
+
|
222 |
+
def interpolate(x, ratio):
|
223 |
+
"""Interpolate data in time domain. This is used to compensate the
|
224 |
+
resolution reduction in downsampling of a CNN.
|
225 |
+
|
226 |
+
Args:
|
227 |
+
x: (batch_size, time_steps, classes_num)
|
228 |
+
ratio: int, ratio to interpolate
|
229 |
+
Returns:
|
230 |
+
upsampled: (batch_size, time_steps * ratio, classes_num)
|
231 |
+
"""
|
232 |
+
(batch_size, time_steps, classes_num) = x.shape
|
233 |
+
upsampled = x[:, :, None, :].repeat(1, 1, ratio, 1)
|
234 |
+
upsampled = upsampled.reshape(batch_size, time_steps * ratio, classes_num)
|
235 |
+
return upsampled
|
236 |
+
|
237 |
+
def do_mixup(x, mixup_lambda):
|
238 |
+
"""
|
239 |
+
Args:
|
240 |
+
x: (batch_size , ...)
|
241 |
+
mixup_lambda: (batch_size,)
|
242 |
+
Returns:
|
243 |
+
out: (batch_size, ...)
|
244 |
+
"""
|
245 |
+
out = (
|
246 |
+
x.transpose(0, -1) * mixup_lambda
|
247 |
+
+ torch.flip(x, dims=[0]).transpose(0, -1) * (1 - mixup_lambda)
|
248 |
+
).transpose(0, -1)
|
249 |
+
return out
|
250 |
+
|
251 |
+
# from PyTorch internals
|
252 |
+
def _ntuple(n):
|
253 |
+
def parse(x):
|
254 |
+
if isinstance(x, collections.abc.Iterable):
|
255 |
+
return x
|
256 |
+
return tuple(repeat(x, n))
|
257 |
+
return parse
|
258 |
+
|
259 |
+
to_1tuple = _ntuple(1)
|
260 |
+
to_2tuple = _ntuple(2)
|
261 |
+
to_3tuple = _ntuple(3)
|
262 |
+
to_4tuple = _ntuple(4)
|
263 |
+
to_ntuple = _ntuple
|
264 |
+
|
265 |
+
def drop_path(x, drop_prob: float = 0., training: bool = False):
|
266 |
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
267 |
+
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
|
268 |
+
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
|
269 |
+
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
|
270 |
+
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
|
271 |
+
'survival rate' as the argument.
|
272 |
+
"""
|
273 |
+
if drop_prob == 0. or not training:
|
274 |
+
return x
|
275 |
+
keep_prob = 1 - drop_prob
|
276 |
+
shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
|
277 |
+
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
|
278 |
+
random_tensor.floor_() # binarize
|
279 |
+
output = x.div(keep_prob) * random_tensor
|
280 |
+
return output
|
281 |
+
|
282 |
+
|
283 |
+
class DropPath(nn.Module):
|
284 |
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
285 |
+
"""
|
286 |
+
def __init__(self, drop_prob=None):
|
287 |
+
super(DropPath, self).__init__()
|
288 |
+
self.drop_prob = drop_prob
|
289 |
+
|
290 |
+
def forward(self, x):
|
291 |
+
return drop_path(x, self.drop_prob, self.training)
|
292 |
+
|
293 |
+
class PatchEmbed(nn.Module):
|
294 |
+
""" 2D Image to Patch Embedding
|
295 |
+
"""
|
296 |
+
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, norm_layer=None, flatten=True, patch_stride = 16,
|
297 |
+
enable_fusion=False, fusion_type='None'):
|
298 |
+
super().__init__()
|
299 |
+
img_size = to_2tuple(img_size)
|
300 |
+
patch_size = to_2tuple(patch_size)
|
301 |
+
patch_stride = to_2tuple(patch_stride)
|
302 |
+
self.img_size = img_size
|
303 |
+
self.patch_size = patch_size
|
304 |
+
self.patch_stride = patch_stride
|
305 |
+
self.grid_size = (img_size[0] // patch_stride[0], img_size[1] // patch_stride[1])
|
306 |
+
self.num_patches = self.grid_size[0] * self.grid_size[1]
|
307 |
+
self.flatten = flatten
|
308 |
+
self.in_chans = in_chans
|
309 |
+
self.embed_dim = embed_dim
|
310 |
+
|
311 |
+
self.enable_fusion = enable_fusion
|
312 |
+
self.fusion_type = fusion_type
|
313 |
+
|
314 |
+
padding = ((patch_size[0] - patch_stride[0]) // 2, (patch_size[1] - patch_stride[1]) // 2)
|
315 |
+
|
316 |
+
if (self.enable_fusion) and (self.fusion_type == 'channel_map'):
|
317 |
+
self.proj = nn.Conv2d(in_chans*4, embed_dim, kernel_size=patch_size, stride=patch_stride, padding=padding)
|
318 |
+
else:
|
319 |
+
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_stride, padding=padding)
|
320 |
+
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
|
321 |
+
|
322 |
+
if (self.enable_fusion) and (self.fusion_type in ['daf_2d','aff_2d','iaff_2d']):
|
323 |
+
self.mel_conv2d = nn.Conv2d(in_chans, embed_dim, kernel_size=(patch_size[0], patch_size[1]*3), stride=(patch_stride[0], patch_stride[1] * 3), padding=padding)
|
324 |
+
if self.fusion_type == 'daf_2d':
|
325 |
+
self.fusion_model = DAF()
|
326 |
+
elif self.fusion_type == 'aff_2d':
|
327 |
+
self.fusion_model = AFF(channels=embed_dim, type='2D')
|
328 |
+
elif self.fusion_type == 'iaff_2d':
|
329 |
+
self.fusion_model = iAFF(channels=embed_dim, type='2D')
|
330 |
+
def forward(self, x, longer_idx = None):
|
331 |
+
if (self.enable_fusion) and (self.fusion_type in ['daf_2d','aff_2d','iaff_2d']):
|
332 |
+
global_x = x[:,0:1,:,:]
|
333 |
+
|
334 |
+
|
335 |
+
# global processing
|
336 |
+
B, C, H, W = global_x.shape
|
337 |
+
assert H == self.img_size[0] and W == self.img_size[1], \
|
338 |
+
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
|
339 |
+
global_x = self.proj(global_x)
|
340 |
+
TW = global_x.size(-1)
|
341 |
+
if len(longer_idx) > 0:
|
342 |
+
# local processing
|
343 |
+
local_x = x[longer_idx,1:,:,:].contiguous()
|
344 |
+
B, C, H, W = local_x.shape
|
345 |
+
local_x = local_x.view(B*C,1,H,W)
|
346 |
+
local_x = self.mel_conv2d(local_x)
|
347 |
+
local_x = local_x.view(B,C,local_x.size(1),local_x.size(2),local_x.size(3))
|
348 |
+
local_x = local_x.permute((0,2,3,1,4)).contiguous().flatten(3)
|
349 |
+
TB,TC,TH,_ = local_x.size()
|
350 |
+
if local_x.size(-1) < TW:
|
351 |
+
local_x = torch.cat([local_x, torch.zeros((TB,TC,TH,TW-local_x.size(-1)), device=global_x.device)], dim=-1)
|
352 |
+
else:
|
353 |
+
local_x = local_x[:,:,:,:TW]
|
354 |
+
|
355 |
+
global_x[longer_idx] = self.fusion_model(global_x[longer_idx],local_x)
|
356 |
+
x = global_x
|
357 |
+
else:
|
358 |
+
B, C, H, W = x.shape
|
359 |
+
assert H == self.img_size[0] and W == self.img_size[1], \
|
360 |
+
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
|
361 |
+
x = self.proj(x)
|
362 |
+
|
363 |
+
if self.flatten:
|
364 |
+
x = x.flatten(2).transpose(1, 2) # BCHW -> BNC
|
365 |
+
x = self.norm(x)
|
366 |
+
return x
|
367 |
+
|
368 |
+
class Mlp(nn.Module):
|
369 |
+
""" MLP as used in Vision Transformer, MLP-Mixer and related networks
|
370 |
+
"""
|
371 |
+
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
|
372 |
+
super().__init__()
|
373 |
+
out_features = out_features or in_features
|
374 |
+
hidden_features = hidden_features or in_features
|
375 |
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
376 |
+
self.act = act_layer()
|
377 |
+
self.fc2 = nn.Linear(hidden_features, out_features)
|
378 |
+
self.drop = nn.Dropout(drop)
|
379 |
+
|
380 |
+
def forward(self, x):
|
381 |
+
x = self.fc1(x)
|
382 |
+
x = self.act(x)
|
383 |
+
x = self.drop(x)
|
384 |
+
x = self.fc2(x)
|
385 |
+
x = self.drop(x)
|
386 |
+
return x
|
387 |
+
|
388 |
+
def _no_grad_trunc_normal_(tensor, mean, std, a, b):
|
389 |
+
# Cut & paste from PyTorch official master until it's in a few official releases - RW
|
390 |
+
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
|
391 |
+
def norm_cdf(x):
|
392 |
+
# Computes standard normal cumulative distribution function
|
393 |
+
return (1. + math.erf(x / math.sqrt(2.))) / 2.
|
394 |
+
|
395 |
+
if (mean < a - 2 * std) or (mean > b + 2 * std):
|
396 |
+
warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
|
397 |
+
"The distribution of values may be incorrect.",
|
398 |
+
stacklevel=2)
|
399 |
+
|
400 |
+
with torch.no_grad():
|
401 |
+
# Values are generated by using a truncated uniform distribution and
|
402 |
+
# then using the inverse CDF for the normal distribution.
|
403 |
+
# Get upper and lower cdf values
|
404 |
+
l = norm_cdf((a - mean) / std)
|
405 |
+
u = norm_cdf((b - mean) / std)
|
406 |
+
|
407 |
+
# Uniformly fill tensor with values from [l, u], then translate to
|
408 |
+
# [2l-1, 2u-1].
|
409 |
+
tensor.uniform_(2 * l - 1, 2 * u - 1)
|
410 |
+
|
411 |
+
# Use inverse cdf transform for normal distribution to get truncated
|
412 |
+
# standard normal
|
413 |
+
tensor.erfinv_()
|
414 |
+
|
415 |
+
# Transform to proper mean, std
|
416 |
+
tensor.mul_(std * math.sqrt(2.))
|
417 |
+
tensor.add_(mean)
|
418 |
+
|
419 |
+
# Clamp to ensure it's in the proper range
|
420 |
+
tensor.clamp_(min=a, max=b)
|
421 |
+
return tensor
|
422 |
+
|
423 |
+
|
424 |
+
def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
|
425 |
+
# type: (Tensor, float, float, float, float) -> Tensor
|
426 |
+
r"""Fills the input Tensor with values drawn from a truncated
|
427 |
+
normal distribution. The values are effectively drawn from the
|
428 |
+
normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
|
429 |
+
with values outside :math:`[a, b]` redrawn until they are within
|
430 |
+
the bounds. The method used for generating the random values works
|
431 |
+
best when :math:`a \leq \text{mean} \leq b`.
|
432 |
+
Args:
|
433 |
+
tensor: an n-dimensional `torch.Tensor`
|
434 |
+
mean: the mean of the normal distribution
|
435 |
+
std: the standard deviation of the normal distribution
|
436 |
+
a: the minimum cutoff value
|
437 |
+
b: the maximum cutoff value
|
438 |
+
Examples:
|
439 |
+
>>> w = torch.empty(3, 5)
|
440 |
+
>>> nn.init.trunc_normal_(w)
|
441 |
+
"""
|
442 |
+
return _no_grad_trunc_normal_(tensor, mean, std, a, b)
|
443 |
+
|
444 |
+
|
445 |
+
def variance_scaling_(tensor, scale=1.0, mode='fan_in', distribution='normal'):
|
446 |
+
fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor)
|
447 |
+
if mode == 'fan_in':
|
448 |
+
denom = fan_in
|
449 |
+
elif mode == 'fan_out':
|
450 |
+
denom = fan_out
|
451 |
+
elif mode == 'fan_avg':
|
452 |
+
denom = (fan_in + fan_out) / 2
|
453 |
+
|
454 |
+
variance = scale / denom
|
455 |
+
|
456 |
+
if distribution == "truncated_normal":
|
457 |
+
# constant is stddev of standard normal truncated to (-2, 2)
|
458 |
+
trunc_normal_(tensor, std=math.sqrt(variance) / .87962566103423978)
|
459 |
+
elif distribution == "normal":
|
460 |
+
tensor.normal_(std=math.sqrt(variance))
|
461 |
+
elif distribution == "uniform":
|
462 |
+
bound = math.sqrt(3 * variance)
|
463 |
+
tensor.uniform_(-bound, bound)
|
464 |
+
else:
|
465 |
+
raise ValueError(f"invalid distribution {distribution}")
|
466 |
+
|
467 |
+
|
468 |
+
def lecun_normal_(tensor):
|
469 |
+
variance_scaling_(tensor, mode='fan_in', distribution='truncated_normal')
|
470 |
+
|
471 |
+
def window_partition(x, window_size):
|
472 |
+
"""
|
473 |
+
Args:
|
474 |
+
x: (B, H, W, C)
|
475 |
+
window_size (int): window size
|
476 |
+
Returns:
|
477 |
+
windows: (num_windows*B, window_size, window_size, C)
|
478 |
+
"""
|
479 |
+
B, H, W, C = x.shape
|
480 |
+
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
|
481 |
+
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
|
482 |
+
return windows
|
483 |
+
|
484 |
+
|
485 |
+
def window_reverse(windows, window_size, H, W):
|
486 |
+
"""
|
487 |
+
Args:
|
488 |
+
windows: (num_windows*B, window_size, window_size, C)
|
489 |
+
window_size (int): Window size
|
490 |
+
H (int): Height of image
|
491 |
+
W (int): Width of image
|
492 |
+
Returns:
|
493 |
+
x: (B, H, W, C)
|
494 |
+
"""
|
495 |
+
B = int(windows.shape[0] / (H * W / window_size / window_size))
|
496 |
+
x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
|
497 |
+
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
|
498 |
+
return x
|
499 |
+
|
500 |
+
|
501 |
+
class WindowAttention(nn.Module):
|
502 |
+
r""" Window based multi-head self attention (W-MSA) module with relative position bias.
|
503 |
+
It supports both of shifted and non-shifted window.
|
504 |
+
Args:
|
505 |
+
dim (int): Number of input channels.
|
506 |
+
window_size (tuple[int]): The height and width of the window.
|
507 |
+
num_heads (int): Number of attention heads.
|
508 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
509 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
|
510 |
+
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
|
511 |
+
proj_drop (float, optional): Dropout ratio of output. Default: 0.0
|
512 |
+
"""
|
513 |
+
|
514 |
+
def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.):
|
515 |
+
|
516 |
+
super().__init__()
|
517 |
+
self.dim = dim
|
518 |
+
self.window_size = window_size # Wh, Ww
|
519 |
+
self.num_heads = num_heads
|
520 |
+
head_dim = dim // num_heads
|
521 |
+
self.scale = qk_scale or head_dim ** -0.5
|
522 |
+
|
523 |
+
# define a parameter table of relative position bias
|
524 |
+
self.relative_position_bias_table = nn.Parameter(
|
525 |
+
torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) # 2*Wh-1 * 2*Ww-1, nH
|
526 |
+
|
527 |
+
# get pair-wise relative position index for each token inside the window
|
528 |
+
coords_h = torch.arange(self.window_size[0])
|
529 |
+
coords_w = torch.arange(self.window_size[1])
|
530 |
+
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
|
531 |
+
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
|
532 |
+
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
|
533 |
+
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
|
534 |
+
relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
|
535 |
+
relative_coords[:, :, 1] += self.window_size[1] - 1
|
536 |
+
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
|
537 |
+
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
|
538 |
+
self.register_buffer("relative_position_index", relative_position_index)
|
539 |
+
|
540 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
541 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
542 |
+
self.proj = nn.Linear(dim, dim)
|
543 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
544 |
+
|
545 |
+
trunc_normal_(self.relative_position_bias_table, std=.02)
|
546 |
+
self.softmax = nn.Softmax(dim=-1)
|
547 |
+
|
548 |
+
def forward(self, x, mask=None):
|
549 |
+
"""
|
550 |
+
Args:
|
551 |
+
x: input features with shape of (num_windows*B, N, C)
|
552 |
+
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
|
553 |
+
"""
|
554 |
+
B_, N, C = x.shape
|
555 |
+
qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
556 |
+
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
|
557 |
+
|
558 |
+
q = q * self.scale
|
559 |
+
attn = (q @ k.transpose(-2, -1))
|
560 |
+
|
561 |
+
relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
|
562 |
+
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH
|
563 |
+
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
|
564 |
+
attn = attn + relative_position_bias.unsqueeze(0)
|
565 |
+
|
566 |
+
if mask is not None:
|
567 |
+
nW = mask.shape[0]
|
568 |
+
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
|
569 |
+
attn = attn.view(-1, self.num_heads, N, N)
|
570 |
+
attn = self.softmax(attn)
|
571 |
+
else:
|
572 |
+
attn = self.softmax(attn)
|
573 |
+
|
574 |
+
attn = self.attn_drop(attn)
|
575 |
+
|
576 |
+
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
|
577 |
+
x = self.proj(x)
|
578 |
+
x = self.proj_drop(x)
|
579 |
+
return x, attn
|
580 |
+
|
581 |
+
def extra_repr(self):
|
582 |
+
return f'dim={self.dim}, window_size={self.window_size}, num_heads={self.num_heads}'
|
583 |
+
|
584 |
+
|
585 |
+
# We use the model based on Swintransformer Block, therefore we can use the swin-transformer pretrained model
|
586 |
+
class SwinTransformerBlock(nn.Module):
|
587 |
+
r""" Swin Transformer Block.
|
588 |
+
Args:
|
589 |
+
dim (int): Number of input channels.
|
590 |
+
input_resolution (tuple[int]): Input resulotion.
|
591 |
+
num_heads (int): Number of attention heads.
|
592 |
+
window_size (int): Window size.
|
593 |
+
shift_size (int): Shift size for SW-MSA.
|
594 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
595 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
596 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
|
597 |
+
drop (float, optional): Dropout rate. Default: 0.0
|
598 |
+
attn_drop (float, optional): Attention dropout rate. Default: 0.0
|
599 |
+
drop_path (float, optional): Stochastic depth rate. Default: 0.0
|
600 |
+
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
|
601 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
602 |
+
"""
|
603 |
+
|
604 |
+
def __init__(self, dim, input_resolution, num_heads, window_size=7, shift_size=0,
|
605 |
+
mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0.,
|
606 |
+
act_layer=nn.GELU, norm_layer=nn.LayerNorm, norm_before_mlp='ln'):
|
607 |
+
super().__init__()
|
608 |
+
self.dim = dim
|
609 |
+
self.input_resolution = input_resolution
|
610 |
+
self.num_heads = num_heads
|
611 |
+
self.window_size = window_size
|
612 |
+
self.shift_size = shift_size
|
613 |
+
self.mlp_ratio = mlp_ratio
|
614 |
+
self.norm_before_mlp = norm_before_mlp
|
615 |
+
if min(self.input_resolution) <= self.window_size:
|
616 |
+
# if window size is larger than input resolution, we don't partition windows
|
617 |
+
self.shift_size = 0
|
618 |
+
self.window_size = min(self.input_resolution)
|
619 |
+
assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
|
620 |
+
|
621 |
+
self.norm1 = norm_layer(dim)
|
622 |
+
self.attn = WindowAttention(
|
623 |
+
dim, window_size=to_2tuple(self.window_size), num_heads=num_heads,
|
624 |
+
qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
|
625 |
+
|
626 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
627 |
+
if self.norm_before_mlp == 'ln':
|
628 |
+
self.norm2 = nn.LayerNorm(dim)
|
629 |
+
elif self.norm_before_mlp == 'bn':
|
630 |
+
self.norm2 = lambda x: nn.BatchNorm1d(dim)(x.transpose(1, 2)).transpose(1, 2)
|
631 |
+
else:
|
632 |
+
raise NotImplementedError
|
633 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
634 |
+
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
635 |
+
|
636 |
+
if self.shift_size > 0:
|
637 |
+
# calculate attention mask for SW-MSA
|
638 |
+
H, W = self.input_resolution
|
639 |
+
img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1
|
640 |
+
h_slices = (slice(0, -self.window_size),
|
641 |
+
slice(-self.window_size, -self.shift_size),
|
642 |
+
slice(-self.shift_size, None))
|
643 |
+
w_slices = (slice(0, -self.window_size),
|
644 |
+
slice(-self.window_size, -self.shift_size),
|
645 |
+
slice(-self.shift_size, None))
|
646 |
+
cnt = 0
|
647 |
+
for h in h_slices:
|
648 |
+
for w in w_slices:
|
649 |
+
img_mask[:, h, w, :] = cnt
|
650 |
+
cnt += 1
|
651 |
+
|
652 |
+
mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1
|
653 |
+
mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
|
654 |
+
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
|
655 |
+
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
|
656 |
+
else:
|
657 |
+
attn_mask = None
|
658 |
+
|
659 |
+
self.register_buffer("attn_mask", attn_mask)
|
660 |
+
|
661 |
+
def forward(self, x):
|
662 |
+
# pdb.set_trace()
|
663 |
+
H, W = self.input_resolution
|
664 |
+
# print("H: ", H)
|
665 |
+
# print("W: ", W)
|
666 |
+
# pdb.set_trace()
|
667 |
+
B, L, C = x.shape
|
668 |
+
# assert L == H * W, "input feature has wrong size"
|
669 |
+
|
670 |
+
shortcut = x
|
671 |
+
x = self.norm1(x)
|
672 |
+
x = x.view(B, H, W, C)
|
673 |
+
|
674 |
+
# cyclic shift
|
675 |
+
if self.shift_size > 0:
|
676 |
+
shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
|
677 |
+
else:
|
678 |
+
shifted_x = x
|
679 |
+
|
680 |
+
# partition windows
|
681 |
+
x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C
|
682 |
+
x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C
|
683 |
+
|
684 |
+
# W-MSA/SW-MSA
|
685 |
+
attn_windows, attn = self.attn(x_windows, mask=self.attn_mask) # nW*B, window_size*window_size, C
|
686 |
+
|
687 |
+
# merge windows
|
688 |
+
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
|
689 |
+
shifted_x = window_reverse(attn_windows, self.window_size, H, W) # B H' W' C
|
690 |
+
|
691 |
+
# reverse cyclic shift
|
692 |
+
if self.shift_size > 0:
|
693 |
+
x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
|
694 |
+
else:
|
695 |
+
x = shifted_x
|
696 |
+
x = x.view(B, H * W, C)
|
697 |
+
|
698 |
+
# FFN
|
699 |
+
x = shortcut + self.drop_path(x)
|
700 |
+
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
701 |
+
|
702 |
+
return x, attn
|
703 |
+
|
704 |
+
def extra_repr(self):
|
705 |
+
return f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " \
|
706 |
+
f"window_size={self.window_size}, shift_size={self.shift_size}, mlp_ratio={self.mlp_ratio}"
|
707 |
+
|
708 |
+
|
709 |
+
|
710 |
+
class PatchMerging(nn.Module):
|
711 |
+
r""" Patch Merging Layer.
|
712 |
+
Args:
|
713 |
+
input_resolution (tuple[int]): Resolution of input feature.
|
714 |
+
dim (int): Number of input channels.
|
715 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
716 |
+
"""
|
717 |
+
|
718 |
+
def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm):
|
719 |
+
super().__init__()
|
720 |
+
self.input_resolution = input_resolution
|
721 |
+
self.dim = dim
|
722 |
+
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
|
723 |
+
self.norm = norm_layer(4 * dim)
|
724 |
+
|
725 |
+
def forward(self, x):
|
726 |
+
"""
|
727 |
+
x: B, H*W, C
|
728 |
+
"""
|
729 |
+
H, W = self.input_resolution
|
730 |
+
B, L, C = x.shape
|
731 |
+
assert L == H * W, "input feature has wrong size"
|
732 |
+
assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even."
|
733 |
+
|
734 |
+
x = x.view(B, H, W, C)
|
735 |
+
|
736 |
+
x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
|
737 |
+
x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
|
738 |
+
x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
|
739 |
+
x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
|
740 |
+
x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
|
741 |
+
x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C
|
742 |
+
|
743 |
+
x = self.norm(x)
|
744 |
+
x = self.reduction(x)
|
745 |
+
|
746 |
+
return x
|
747 |
+
|
748 |
+
def extra_repr(self):
|
749 |
+
return f"input_resolution={self.input_resolution}, dim={self.dim}"
|
750 |
+
|
751 |
+
|
752 |
+
class BasicLayer(nn.Module):
|
753 |
+
""" A basic Swin Transformer layer for one stage.
|
754 |
+
Args:
|
755 |
+
dim (int): Number of input channels.
|
756 |
+
input_resolution (tuple[int]): Input resolution.
|
757 |
+
depth (int): Number of blocks.
|
758 |
+
num_heads (int): Number of attention heads.
|
759 |
+
window_size (int): Local window size.
|
760 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
761 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
762 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
|
763 |
+
drop (float, optional): Dropout rate. Default: 0.0
|
764 |
+
attn_drop (float, optional): Attention dropout rate. Default: 0.0
|
765 |
+
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
|
766 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
767 |
+
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
|
768 |
+
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
|
769 |
+
"""
|
770 |
+
|
771 |
+
def __init__(self, dim, input_resolution, depth, num_heads, window_size,
|
772 |
+
mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0.,
|
773 |
+
drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False,
|
774 |
+
norm_before_mlp='ln'):
|
775 |
+
|
776 |
+
super().__init__()
|
777 |
+
self.dim = dim
|
778 |
+
self.input_resolution = input_resolution
|
779 |
+
self.depth = depth
|
780 |
+
self.use_checkpoint = use_checkpoint
|
781 |
+
|
782 |
+
# build blocks
|
783 |
+
self.blocks = nn.ModuleList([
|
784 |
+
SwinTransformerBlock(dim=dim, input_resolution=input_resolution,
|
785 |
+
num_heads=num_heads, window_size=window_size,
|
786 |
+
shift_size=0 if (i % 2 == 0) else window_size // 2,
|
787 |
+
mlp_ratio=mlp_ratio,
|
788 |
+
qkv_bias=qkv_bias, qk_scale=qk_scale,
|
789 |
+
drop=drop, attn_drop=attn_drop,
|
790 |
+
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
|
791 |
+
norm_layer=norm_layer, norm_before_mlp=norm_before_mlp)
|
792 |
+
for i in range(depth)])
|
793 |
+
|
794 |
+
# patch merging layer
|
795 |
+
if downsample is not None:
|
796 |
+
self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer)
|
797 |
+
else:
|
798 |
+
self.downsample = None
|
799 |
+
|
800 |
+
def forward(self, x):
|
801 |
+
attns = []
|
802 |
+
for blk in self.blocks:
|
803 |
+
if self.use_checkpoint:
|
804 |
+
x = checkpoint.checkpoint(blk, x)
|
805 |
+
else:
|
806 |
+
x, attn = blk(x)
|
807 |
+
if not self.training:
|
808 |
+
attns.append(attn.unsqueeze(0))
|
809 |
+
if self.downsample is not None:
|
810 |
+
x = self.downsample(x)
|
811 |
+
if not self.training:
|
812 |
+
attn = torch.cat(attns, dim = 0)
|
813 |
+
attn = torch.mean(attn, dim = 0)
|
814 |
+
return x, attn
|
815 |
+
|
816 |
+
# if self.downsample is not None:
|
817 |
+
# x = self.downsample(x)
|
818 |
+
# if not self.training:
|
819 |
+
# attn = torch.cat(attns, dim = 0)
|
820 |
+
# attn = torch.mean(attn, dim = 0)
|
821 |
+
# return x, attn
|
822 |
+
|
823 |
+
def extra_repr(self):
|
824 |
+
return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}"
|
825 |
+
|
826 |
+
|
827 |
+
# The Core of HTSAT
|
828 |
+
class HTSAT_Swin_Transformer(nn.Module):
|
829 |
+
r"""HTSAT based on the Swin Transformer
|
830 |
+
Args:
|
831 |
+
spec_size (int | tuple(int)): Input Spectrogram size. Default 256
|
832 |
+
patch_size (int | tuple(int)): Patch size. Default: 4
|
833 |
+
path_stride (iot | tuple(int)): Patch Stride for Frequency and Time Axis. Default: 4
|
834 |
+
in_chans (int): Number of input image channels. Default: 1 (mono)
|
835 |
+
num_classes (int): Number of classes for classification head. Default: 527
|
836 |
+
embed_dim (int): Patch embedding dimension. Default: 96
|
837 |
+
depths (tuple(int)): Depth of each HTSAT-Swin Transformer layer.
|
838 |
+
num_heads (tuple(int)): Number of attention heads in different layers.
|
839 |
+
window_size (int): Window size. Default: 8
|
840 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4
|
841 |
+
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
|
842 |
+
qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. Default: None
|
843 |
+
drop_rate (float): Dropout rate. Default: 0
|
844 |
+
attn_drop_rate (float): Attention dropout rate. Default: 0
|
845 |
+
drop_path_rate (float): Stochastic depth rate. Default: 0.1
|
846 |
+
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
|
847 |
+
ape (bool): If True, add absolute position embedding to the patch embedding. Default: False
|
848 |
+
patch_norm (bool): If True, add normalization after patch embedding. Default: True
|
849 |
+
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False
|
850 |
+
config (module): The configuration Module from config.py
|
851 |
+
"""
|
852 |
+
|
853 |
+
def __init__(self, spec_size=256, patch_size=4, patch_stride=(4,4),
|
854 |
+
in_chans=1, num_classes=527,
|
855 |
+
embed_dim=96, depths=[2, 2, 6, 2], num_heads=[4, 8, 16, 32],
|
856 |
+
window_size=8, mlp_ratio=4., qkv_bias=True, qk_scale=None,
|
857 |
+
drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1,
|
858 |
+
norm_layer=nn.LayerNorm,
|
859 |
+
ape=False, patch_norm=True,
|
860 |
+
use_checkpoint=False, norm_before_mlp='ln', config = None,
|
861 |
+
enable_fusion = False, fusion_type = 'None', **kwargs):
|
862 |
+
super(HTSAT_Swin_Transformer, self).__init__()
|
863 |
+
|
864 |
+
self.config = config
|
865 |
+
self.spec_size = spec_size
|
866 |
+
self.patch_stride = patch_stride
|
867 |
+
self.patch_size = patch_size
|
868 |
+
self.window_size = window_size
|
869 |
+
self.embed_dim = embed_dim
|
870 |
+
self.depths = depths
|
871 |
+
self.ape = ape
|
872 |
+
self.in_chans = in_chans
|
873 |
+
self.num_classes = num_classes
|
874 |
+
self.num_heads = num_heads
|
875 |
+
self.num_layers = len(self.depths)
|
876 |
+
self.num_features = int(self.embed_dim * 2 ** (self.num_layers - 1))
|
877 |
+
|
878 |
+
self.drop_rate = drop_rate
|
879 |
+
self.attn_drop_rate = attn_drop_rate
|
880 |
+
self.drop_path_rate = drop_path_rate
|
881 |
+
|
882 |
+
self.qkv_bias = qkv_bias
|
883 |
+
self.qk_scale = None
|
884 |
+
|
885 |
+
self.patch_norm = patch_norm
|
886 |
+
self.norm_layer = norm_layer if self.patch_norm else None
|
887 |
+
self.norm_before_mlp = norm_before_mlp
|
888 |
+
self.mlp_ratio = mlp_ratio
|
889 |
+
|
890 |
+
self.use_checkpoint = use_checkpoint
|
891 |
+
|
892 |
+
self.enable_fusion = enable_fusion
|
893 |
+
self.fusion_type = fusion_type
|
894 |
+
|
895 |
+
# process mel-spec ; used only once
|
896 |
+
self.freq_ratio = self.spec_size // self.config.mel_bins
|
897 |
+
window = 'hann'
|
898 |
+
center = True
|
899 |
+
pad_mode = 'reflect'
|
900 |
+
ref = 1.0
|
901 |
+
amin = 1e-10
|
902 |
+
top_db = None
|
903 |
+
self.interpolate_ratio = 32 # Downsampled ratio
|
904 |
+
# Spectrogram extractor
|
905 |
+
self.spectrogram_extractor = Spectrogram(n_fft=config.window_size, hop_length=config.hop_size,
|
906 |
+
win_length=config.window_size, window=window, center=center, pad_mode=pad_mode,
|
907 |
+
freeze_parameters=True)
|
908 |
+
# Logmel feature extractor
|
909 |
+
self.logmel_extractor = LogmelFilterBank(sr=config.sample_rate, n_fft=config.window_size,
|
910 |
+
n_mels=config.mel_bins, fmin=config.fmin, fmax=config.fmax, ref=ref, amin=amin, top_db=top_db,
|
911 |
+
freeze_parameters=True)
|
912 |
+
# Spec augmenter
|
913 |
+
self.spec_augmenter = SpecAugmentation(time_drop_width=64, time_stripes_num=2,
|
914 |
+
freq_drop_width=8, freq_stripes_num=2) # 2 2
|
915 |
+
self.bn0 = nn.BatchNorm2d(self.config.mel_bins)
|
916 |
+
|
917 |
+
|
918 |
+
# split spctrogram into non-overlapping patches
|
919 |
+
self.patch_embed = PatchEmbed(
|
920 |
+
img_size=self.spec_size, patch_size=self.patch_size, in_chans=self.in_chans,
|
921 |
+
embed_dim=self.embed_dim, norm_layer=self.norm_layer, patch_stride = patch_stride,
|
922 |
+
enable_fusion=self.enable_fusion, fusion_type=self.fusion_type
|
923 |
+
)
|
924 |
+
|
925 |
+
num_patches = self.patch_embed.num_patches
|
926 |
+
patches_resolution = self.patch_embed.grid_size
|
927 |
+
self.patches_resolution = patches_resolution
|
928 |
+
|
929 |
+
# absolute position embedding
|
930 |
+
if self.ape:
|
931 |
+
self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, self.embed_dim))
|
932 |
+
trunc_normal_(self.absolute_pos_embed, std=.02)
|
933 |
+
|
934 |
+
self.pos_drop = nn.Dropout(p=self.drop_rate)
|
935 |
+
|
936 |
+
# stochastic depth
|
937 |
+
dpr = [x.item() for x in torch.linspace(0, self.drop_path_rate, sum(self.depths))] # stochastic depth decay rule
|
938 |
+
|
939 |
+
# build layers
|
940 |
+
self.layers = nn.ModuleList()
|
941 |
+
for i_layer in range(self.num_layers):
|
942 |
+
layer = BasicLayer(dim=int(self.embed_dim * 2 ** i_layer),
|
943 |
+
input_resolution=(patches_resolution[0] // (2 ** i_layer),
|
944 |
+
patches_resolution[1] // (2 ** i_layer)),
|
945 |
+
depth=self.depths[i_layer],
|
946 |
+
num_heads=self.num_heads[i_layer],
|
947 |
+
window_size=self.window_size,
|
948 |
+
mlp_ratio=self.mlp_ratio,
|
949 |
+
qkv_bias=self.qkv_bias, qk_scale=self.qk_scale,
|
950 |
+
drop=self.drop_rate, attn_drop=self.attn_drop_rate,
|
951 |
+
drop_path=dpr[sum(self.depths[:i_layer]):sum(self.depths[:i_layer + 1])],
|
952 |
+
norm_layer=self.norm_layer,
|
953 |
+
downsample=PatchMerging if (i_layer < self.num_layers - 1) else None,
|
954 |
+
use_checkpoint=use_checkpoint,
|
955 |
+
norm_before_mlp=self.norm_before_mlp)
|
956 |
+
self.layers.append(layer)
|
957 |
+
|
958 |
+
self.norm = self.norm_layer(self.num_features)
|
959 |
+
self.avgpool = nn.AdaptiveAvgPool1d(1)
|
960 |
+
self.maxpool = nn.AdaptiveMaxPool1d(1)
|
961 |
+
|
962 |
+
SF = self.spec_size // (2 ** (len(self.depths) - 1)) // self.patch_stride[0] // self.freq_ratio
|
963 |
+
self.tscam_conv = nn.Conv2d(
|
964 |
+
in_channels = self.num_features,
|
965 |
+
out_channels = self.num_classes,
|
966 |
+
kernel_size = (SF,3),
|
967 |
+
padding = (0,1)
|
968 |
+
)
|
969 |
+
self.head = nn.Linear(num_classes, num_classes)
|
970 |
+
|
971 |
+
if (self.enable_fusion) and (self.fusion_type in ['daf_1d','aff_1d','iaff_1d']):
|
972 |
+
self.mel_conv1d = nn.Sequential(
|
973 |
+
nn.Conv1d(64, 64, kernel_size=5, stride=3, padding=2),
|
974 |
+
nn.BatchNorm1d(64)
|
975 |
+
)
|
976 |
+
if self.fusion_type == 'daf_1d':
|
977 |
+
self.fusion_model = DAF()
|
978 |
+
elif self.fusion_type == 'aff_1d':
|
979 |
+
self.fusion_model = AFF(channels=64, type='1D')
|
980 |
+
elif self.fusion_type == 'iaff_1d':
|
981 |
+
self.fusion_model = iAFF(channels=64, type='1D')
|
982 |
+
|
983 |
+
self.apply(self._init_weights)
|
984 |
+
|
985 |
+
def _init_weights(self, m):
|
986 |
+
if isinstance(m, nn.Linear):
|
987 |
+
trunc_normal_(m.weight, std=.02)
|
988 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
989 |
+
nn.init.constant_(m.bias, 0)
|
990 |
+
elif isinstance(m, nn.LayerNorm):
|
991 |
+
nn.init.constant_(m.bias, 0)
|
992 |
+
nn.init.constant_(m.weight, 1.0)
|
993 |
+
|
994 |
+
@torch.jit.ignore
|
995 |
+
def no_weight_decay(self):
|
996 |
+
return {'absolute_pos_embed'}
|
997 |
+
|
998 |
+
@torch.jit.ignore
|
999 |
+
def no_weight_decay_keywords(self):
|
1000 |
+
return {'relative_position_bias_table'}
|
1001 |
+
|
1002 |
+
|
1003 |
+
def forward_features(self, x, longer_idx = None):
|
1004 |
+
# A deprecated optimization for using a hierarchical output from different blocks
|
1005 |
+
|
1006 |
+
frames_num = x.shape[2]
|
1007 |
+
x = self.patch_embed(x, longer_idx = longer_idx)
|
1008 |
+
if self.ape:
|
1009 |
+
x = x + self.absolute_pos_embed
|
1010 |
+
x = self.pos_drop(x)
|
1011 |
+
for i, layer in enumerate(self.layers):
|
1012 |
+
x, attn = layer(x)
|
1013 |
+
# for x
|
1014 |
+
x = self.norm(x)
|
1015 |
+
B, N, C = x.shape
|
1016 |
+
SF = frames_num // (2 ** (len(self.depths) - 1)) // self.patch_stride[0]
|
1017 |
+
ST = frames_num // (2 ** (len(self.depths) - 1)) // self.patch_stride[1]
|
1018 |
+
x = x.permute(0,2,1).contiguous().reshape(B, C, SF, ST)
|
1019 |
+
B, C, F, T = x.shape
|
1020 |
+
# group 2D CNN
|
1021 |
+
c_freq_bin = F // self.freq_ratio
|
1022 |
+
x = x.reshape(B, C, F // c_freq_bin, c_freq_bin, T)
|
1023 |
+
x = x.permute(0,1,3,2,4).contiguous().reshape(B, C, c_freq_bin, -1)
|
1024 |
+
# get latent_output
|
1025 |
+
fine_grained_latent_output = torch.mean(x, dim = 2)
|
1026 |
+
fine_grained_latent_output = interpolate(fine_grained_latent_output.permute(0,2,1).contiguous(), 8 * self.patch_stride[1])
|
1027 |
+
|
1028 |
+
latent_output = self.avgpool(torch.flatten(x,2))
|
1029 |
+
latent_output = torch.flatten(latent_output, 1)
|
1030 |
+
|
1031 |
+
# display the attention map, if needed
|
1032 |
+
|
1033 |
+
x = self.tscam_conv(x)
|
1034 |
+
x = torch.flatten(x, 2) # B, C, T
|
1035 |
+
|
1036 |
+
fpx = interpolate(torch.sigmoid(x).permute(0,2,1).contiguous(), 8 * self.patch_stride[1])
|
1037 |
+
|
1038 |
+
x = self.avgpool(x)
|
1039 |
+
x = torch.flatten(x, 1)
|
1040 |
+
|
1041 |
+
output_dict = {
|
1042 |
+
'framewise_output': fpx, # already sigmoided
|
1043 |
+
'clipwise_output': torch.sigmoid(x),
|
1044 |
+
'fine_grained_embedding': fine_grained_latent_output,
|
1045 |
+
'embedding': latent_output
|
1046 |
+
}
|
1047 |
+
|
1048 |
+
return output_dict
|
1049 |
+
|
1050 |
+
def crop_wav(self, x, crop_size, spe_pos = None):
|
1051 |
+
time_steps = x.shape[2]
|
1052 |
+
tx = torch.zeros(x.shape[0], x.shape[1], crop_size, x.shape[3]).to(x.device)
|
1053 |
+
for i in range(len(x)):
|
1054 |
+
if spe_pos is None:
|
1055 |
+
crop_pos = random.randint(0, time_steps - crop_size - 1)
|
1056 |
+
else:
|
1057 |
+
crop_pos = spe_pos
|
1058 |
+
tx[i][0] = x[i, 0, crop_pos:crop_pos + crop_size,:]
|
1059 |
+
return tx
|
1060 |
+
|
1061 |
+
# Reshape the wavform to a img size, if you want to use the pretrained swin transformer model
|
1062 |
+
def reshape_wav2img(self, x):
|
1063 |
+
B, C, T, F = x.shape
|
1064 |
+
target_T = int(self.spec_size * self.freq_ratio)
|
1065 |
+
target_F = self.spec_size // self.freq_ratio
|
1066 |
+
assert T <= target_T and F <= target_F, "the wav size should less than or equal to the swin input size"
|
1067 |
+
# to avoid bicubic zero error
|
1068 |
+
if T < target_T:
|
1069 |
+
x = nn.functional.interpolate(x, (target_T, x.shape[3]), mode="bicubic", align_corners=True)
|
1070 |
+
if F < target_F:
|
1071 |
+
x = nn.functional.interpolate(x, (x.shape[2], target_F), mode="bicubic", align_corners=True)
|
1072 |
+
x = x.permute(0,1,3,2).contiguous()
|
1073 |
+
x = x.reshape(x.shape[0], x.shape[1], x.shape[2], self.freq_ratio, x.shape[3] // self.freq_ratio)
|
1074 |
+
# print(x.shape)
|
1075 |
+
x = x.permute(0,1,3,2,4).contiguous()
|
1076 |
+
x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3], x.shape[4])
|
1077 |
+
return x
|
1078 |
+
|
1079 |
+
# Repeat the wavform to a img size, if you want to use the pretrained swin transformer model
|
1080 |
+
def repeat_wat2img(self, x, cur_pos):
|
1081 |
+
B, C, T, F = x.shape
|
1082 |
+
target_T = int(self.spec_size * self.freq_ratio)
|
1083 |
+
target_F = self.spec_size // self.freq_ratio
|
1084 |
+
assert T <= target_T and F <= target_F, "the wav size should less than or equal to the swin input size"
|
1085 |
+
# to avoid bicubic zero error
|
1086 |
+
if T < target_T:
|
1087 |
+
x = nn.functional.interpolate(x, (target_T, x.shape[3]), mode="bicubic", align_corners=True)
|
1088 |
+
if F < target_F:
|
1089 |
+
x = nn.functional.interpolate(x, (x.shape[2], target_F), mode="bicubic", align_corners=True)
|
1090 |
+
x = x.permute(0,1,3,2).contiguous() # B C F T
|
1091 |
+
x = x[:,:,:,cur_pos:cur_pos + self.spec_size]
|
1092 |
+
x = x.repeat(repeats = (1,1,4,1))
|
1093 |
+
return x
|
1094 |
+
|
1095 |
+
def forward_generator(self, x: torch.Tensor, mixup_lambda = None, infer_mode = False, device=None):# out_feat_keys: List[str] = None):
|
1096 |
+
|
1097 |
+
n = int(x.shape[1]/480000)
|
1098 |
+
assert n * 480000 == x.shape[1]
|
1099 |
+
x = rearrange(x, 'b (n t) -> (b n) t', n=n)
|
1100 |
+
if not self.enable_fusion:
|
1101 |
+
# x = x["waveform"].to(device=device, non_blocking=True)
|
1102 |
+
x = x.to(device=device, non_blocking=True)
|
1103 |
+
x = self.spectrogram_extractor(x) # (batch_size, 1, time_steps, freq_bins)
|
1104 |
+
x = self.logmel_extractor(x) # (batch_size, 1, time_steps, mel_bins)
|
1105 |
+
x = x.transpose(1, 3)
|
1106 |
+
x = self.bn0(x)
|
1107 |
+
x = x.transpose(1, 3)
|
1108 |
+
if self.training:
|
1109 |
+
x = self.spec_augmenter(x)
|
1110 |
+
|
1111 |
+
if self.training and mixup_lambda is not None:
|
1112 |
+
x = do_mixup(x, mixup_lambda)
|
1113 |
+
|
1114 |
+
x = self.reshape_wav2img(x)
|
1115 |
+
# output_dict = self.forward_features(x)
|
1116 |
+
|
1117 |
+
# A deprecated optimization for using a hierarchical output from different blocks
|
1118 |
+
longer_idx = None
|
1119 |
+
frames_num = x.shape[2]
|
1120 |
+
x = self.patch_embed(x, longer_idx = longer_idx)
|
1121 |
+
if self.ape:
|
1122 |
+
x = x + self.absolute_pos_embed
|
1123 |
+
x = self.pos_drop(x)
|
1124 |
+
for i, layer in enumerate(self.layers[:3]): # depth: [2,2,12,2]
|
1125 |
+
if i == 2:
|
1126 |
+
for blk in layer.blocks:
|
1127 |
+
x, attn = blk(x)
|
1128 |
+
# 512
|
1129 |
+
x = rearrange(x, '(b n) t c -> b (n t) c', n=n)
|
1130 |
+
x = x if (new_x:=(yield x)) is None else new_x
|
1131 |
+
x = rearrange(x, 'b (n t) c -> (b n) t c', n=n)
|
1132 |
+
else:
|
1133 |
+
x, attn = layer(x)
|
1134 |
+
|
1135 |
+
|
1136 |
+
|
1137 |
+
def forward(self, x: torch.Tensor, mixup_lambda = None, infer_mode = False, device=None):# out_feat_keys: List[str] = None):
|
1138 |
+
|
1139 |
+
n = int(x.shape[1] / 480000)
|
1140 |
+
assert n * 480000 == x.shape[1]
|
1141 |
+
x = rearrange(x, 'b (n t) -> (b n) t', n = n)
|
1142 |
+
if not self.enable_fusion:
|
1143 |
+
# x = x["waveform"].to(device=device, non_blocking=True)
|
1144 |
+
x = x.to(device=device, non_blocking=True)
|
1145 |
+
x = self.spectrogram_extractor(x) # (batch_size, 1, time_steps, freq_bins)
|
1146 |
+
x = self.logmel_extractor(x) # (batch_size, 1, time_steps, mel_bins)
|
1147 |
+
x = x.transpose(1, 3)
|
1148 |
+
x = self.bn0(x)
|
1149 |
+
x = x.transpose(1, 3)
|
1150 |
+
if self.training:
|
1151 |
+
x = self.spec_augmenter(x)
|
1152 |
+
|
1153 |
+
if self.training and mixup_lambda is not None:
|
1154 |
+
x = do_mixup(x, mixup_lambda)
|
1155 |
+
|
1156 |
+
x = self.reshape_wav2img(x)
|
1157 |
+
# x = self.forward_features(x)
|
1158 |
+
|
1159 |
+
longer_idx = None
|
1160 |
+
frames_num = x.shape[2]
|
1161 |
+
x = self.patch_embed(x, longer_idx = longer_idx)
|
1162 |
+
if self.ape:
|
1163 |
+
x = x + self.absolute_pos_embed
|
1164 |
+
x = self.pos_drop(x)
|
1165 |
+
for i, layer in enumerate(self.layers):
|
1166 |
+
x, attn = layer(x)
|
1167 |
+
# for x
|
1168 |
+
x = self.norm(x)
|
1169 |
+
x = rearrange(x, '(b n) t c -> b (n t) c', n = n)
|
1170 |
+
return x
|
1171 |
+
|
1172 |
+
# B, N, C = x.shape
|
1173 |
+
# SF = frames_num // (2 ** (len(self.depths) - 1)) // self.patch_stride[0]
|
1174 |
+
# ST = frames_num // (2 ** (len(self.depths) - 1)) // self.patch_stride[1]
|
1175 |
+
# x = x.permute(0,2,1).contiguous().reshape(B, C, SF, ST)
|
1176 |
+
# B, C, F, T = x.shape
|
1177 |
+
# # group 2D CNN
|
1178 |
+
# c_freq_bin = F // self.freq_ratio
|
1179 |
+
# x = x.reshape(B, C, F // c_freq_bin, c_freq_bin, T)
|
1180 |
+
# x = x.permute(0,1,3,2,4).contiguous().reshape(B, C, c_freq_bin, -1)
|
1181 |
+
# # get latent_output
|
1182 |
+
# fine_grained_latent_output = torch.mean(x, dim = 2)
|
1183 |
+
# fine_grained_latent_output = interpolate(fine_grained_latent_output.permute(0,2,1).contiguous(), 8 * self.patch_stride[1])
|
1184 |
+
|
1185 |
+
# latent_output = self.avgpool(torch.flatten(x,2))
|
1186 |
+
# latent_output = torch.flatten(latent_output, 1)
|
1187 |
+
|
1188 |
+
# # display the attention map, if needed
|
1189 |
+
|
1190 |
+
# x = self.tscam_conv(x)
|
1191 |
+
# x = torch.flatten(x, 2) # B, C, T
|
1192 |
+
|
1193 |
+
# fpx = interpolate(torch.sigmoid(x).permute(0,2,1).contiguous(), 8 * self.patch_stride[1])
|
1194 |
+
|
1195 |
+
# x = self.avgpool(x)
|
1196 |
+
# x = torch.flatten(x, 1)
|
1197 |
+
# return x
|
1198 |
+
|
1199 |
+
def create_htsat_model(audio_cfg, enable_fusion=False, fusion_type='None'):
|
1200 |
+
try:
|
1201 |
+
|
1202 |
+
assert audio_cfg.model_name in ["tiny", "base", "large"], "model name for HTS-AT is wrong!"
|
1203 |
+
if audio_cfg.model_name == "tiny":
|
1204 |
+
model = HTSAT_Swin_Transformer(
|
1205 |
+
spec_size=256,
|
1206 |
+
patch_size=4,
|
1207 |
+
patch_stride=(4,4),
|
1208 |
+
num_classes=audio_cfg.class_num,
|
1209 |
+
embed_dim=96,
|
1210 |
+
depths=[2,2,6,2],
|
1211 |
+
num_heads=[4,8,16,32],
|
1212 |
+
window_size=8,
|
1213 |
+
config = audio_cfg,
|
1214 |
+
enable_fusion = enable_fusion,
|
1215 |
+
fusion_type = fusion_type
|
1216 |
+
)
|
1217 |
+
elif audio_cfg.model_name == "base":
|
1218 |
+
model = HTSAT_Swin_Transformer(
|
1219 |
+
spec_size=256,
|
1220 |
+
patch_size=4,
|
1221 |
+
patch_stride=(4,4),
|
1222 |
+
num_classes=audio_cfg.class_num,
|
1223 |
+
embed_dim=128,
|
1224 |
+
depths=[2,2,12,2],
|
1225 |
+
num_heads=[4,8,16,32],
|
1226 |
+
window_size=8,
|
1227 |
+
config = audio_cfg,
|
1228 |
+
enable_fusion = enable_fusion,
|
1229 |
+
fusion_type = fusion_type
|
1230 |
+
)
|
1231 |
+
elif audio_cfg.model_name == "large":
|
1232 |
+
model = HTSAT_Swin_Transformer(
|
1233 |
+
spec_size=256,
|
1234 |
+
patch_size=4,
|
1235 |
+
patch_stride=(4,4),
|
1236 |
+
num_classes=audio_cfg.class_num,
|
1237 |
+
embed_dim=256,
|
1238 |
+
depths=[2,2,12,2],
|
1239 |
+
num_heads=[4,8,16,32],
|
1240 |
+
window_size=8,
|
1241 |
+
config = audio_cfg,
|
1242 |
+
enable_fusion = enable_fusion,
|
1243 |
+
fusion_type = fusion_type
|
1244 |
+
)
|
1245 |
+
|
1246 |
+
return model
|
1247 |
+
except:
|
1248 |
+
raise RuntimeError(f'Import Model for {audio_cfg.model_name} not found, or the audio cfg parameters are not enough.')
|
1249 |
+
|
mae_vit.py
ADDED
@@ -0,0 +1,303 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from mmcls.models import VisionTransformer
|
3 |
+
from torch import nn
|
4 |
+
from torch.utils.checkpoint import checkpoint
|
5 |
+
import copy
|
6 |
+
|
7 |
+
def build_2d_sincos_position_embedding(patches_resolution,
|
8 |
+
embed_dims,
|
9 |
+
temperature=10000.,
|
10 |
+
cls_token=False):
|
11 |
+
"""The function is to build position embedding for model to obtain the
|
12 |
+
position information of the image patches."""
|
13 |
+
|
14 |
+
if isinstance(patches_resolution, int):
|
15 |
+
patches_resolution = (patches_resolution, patches_resolution)
|
16 |
+
|
17 |
+
h, w = patches_resolution
|
18 |
+
grid_w = torch.arange(w, dtype=torch.float32)
|
19 |
+
grid_h = torch.arange(h, dtype=torch.float32)
|
20 |
+
grid_w, grid_h = torch.meshgrid(grid_w, grid_h)
|
21 |
+
assert embed_dims % 4 == 0, \
|
22 |
+
'Embed dimension must be divisible by 4.'
|
23 |
+
pos_dim = embed_dims // 4
|
24 |
+
|
25 |
+
omega = torch.arange(pos_dim, dtype=torch.float32) / pos_dim
|
26 |
+
omega = 1. / (temperature**omega)
|
27 |
+
out_w = torch.einsum('m,d->md', [grid_w.flatten(), omega])
|
28 |
+
out_h = torch.einsum('m,d->md', [grid_h.flatten(), omega])
|
29 |
+
|
30 |
+
pos_emb = torch.cat(
|
31 |
+
[
|
32 |
+
torch.sin(out_w),
|
33 |
+
torch.cos(out_w),
|
34 |
+
torch.sin(out_h),
|
35 |
+
torch.cos(out_h)
|
36 |
+
],
|
37 |
+
dim=1,
|
38 |
+
)[None, :, :]
|
39 |
+
|
40 |
+
if cls_token:
|
41 |
+
cls_token_pe = torch.zeros([1, 1, embed_dims], dtype=torch.float32)
|
42 |
+
pos_emb = torch.cat([cls_token_pe, pos_emb], dim=1)
|
43 |
+
|
44 |
+
return pos_emb
|
45 |
+
|
46 |
+
|
47 |
+
|
48 |
+
class MAEViT(VisionTransformer):
|
49 |
+
"""Vision Transformer for MAE pre-training.
|
50 |
+
|
51 |
+
A PyTorch implement of: `An Image is Worth 16x16 Words: Transformers
|
52 |
+
for Image Recognition at Scale <https://arxiv.org/abs/2010.11929>`_
|
53 |
+
|
54 |
+
Args:
|
55 |
+
arch (str | dict): Vision Transformer architecture
|
56 |
+
Default: 'b'
|
57 |
+
img_size (int | tuple): Input image size
|
58 |
+
patch_size (int | tuple): The patch size
|
59 |
+
out_indices (Sequence | int): Output from which stages.
|
60 |
+
Defaults to -1, means the last stage.
|
61 |
+
drop_rate (float): Probability of an element to be zeroed.
|
62 |
+
Defaults to 0.
|
63 |
+
drop_path_rate (float): stochastic depth rate. Defaults to 0.
|
64 |
+
norm_cfg (dict): Config dict for normalization layer.
|
65 |
+
Defaults to ``dict(type='LN')``.
|
66 |
+
final_norm (bool): Whether to add a additional layer to normalize
|
67 |
+
final feature map. Defaults to True.
|
68 |
+
output_cls_token (bool): Whether output the cls_token. If set True,
|
69 |
+
`with_cls_token` must be True. Defaults to True.
|
70 |
+
interpolate_mode (str): Select the interpolate mode for position
|
71 |
+
embeding vector resize. Defaults to "bicubic".
|
72 |
+
patch_cfg (dict): Configs of patch embeding. Defaults to an empty dict.
|
73 |
+
layer_cfgs (Sequence | dict): Configs of each transformer layer in
|
74 |
+
encoder. Defaults to an empty dict.
|
75 |
+
mask_ratio (bool): The ratio of total number of patches to be masked.
|
76 |
+
Defaults to 0.75.
|
77 |
+
init_cfg (dict, optional): Initialization config dict.
|
78 |
+
Defaults to None.
|
79 |
+
"""
|
80 |
+
|
81 |
+
arch_zoo = {
|
82 |
+
**dict.fromkeys(
|
83 |
+
['mocov3-s', 'mocov3-small'], {
|
84 |
+
'embed_dims': 384,
|
85 |
+
'num_layers': 12,
|
86 |
+
'num_heads': 12,
|
87 |
+
'feedforward_channels': 1536,
|
88 |
+
}),
|
89 |
+
**dict.fromkeys(
|
90 |
+
['b', 'base'], {
|
91 |
+
'embed_dims': 768,
|
92 |
+
'num_layers': 12,
|
93 |
+
'num_heads': 12,
|
94 |
+
'feedforward_channels': 3072
|
95 |
+
}),
|
96 |
+
}
|
97 |
+
|
98 |
+
|
99 |
+
|
100 |
+
def __init__(self,
|
101 |
+
arch='b',
|
102 |
+
img_size=224,
|
103 |
+
patch_size=16,
|
104 |
+
out_indices=-1,
|
105 |
+
drop_rate=0,
|
106 |
+
drop_path_rate=0,
|
107 |
+
norm_cfg=dict(type='LN', eps=1e-6),
|
108 |
+
final_norm=True,
|
109 |
+
output_cls_token=False,
|
110 |
+
interpolate_mode='bicubic',
|
111 |
+
patch_cfg=dict(),
|
112 |
+
layer_cfgs=dict(),
|
113 |
+
gradientCKPT=False,
|
114 |
+
mask_ratio=0.75,
|
115 |
+
init_cfg=None):
|
116 |
+
super().__init__(
|
117 |
+
arch=arch,
|
118 |
+
img_size=img_size,
|
119 |
+
patch_size=patch_size,
|
120 |
+
out_indices=out_indices,
|
121 |
+
drop_rate=drop_rate,
|
122 |
+
drop_path_rate=drop_path_rate,
|
123 |
+
norm_cfg=norm_cfg,
|
124 |
+
final_norm=final_norm,
|
125 |
+
output_cls_token=output_cls_token,
|
126 |
+
interpolate_mode=interpolate_mode,
|
127 |
+
patch_cfg=patch_cfg,
|
128 |
+
layer_cfgs=layer_cfgs,
|
129 |
+
init_cfg=init_cfg)
|
130 |
+
self.gradientCKPT = gradientCKPT
|
131 |
+
self.pos_embed.requires_grad = False
|
132 |
+
self.mask_ratio = mask_ratio
|
133 |
+
self.num_patches = self.patch_resolution[0] * self.patch_resolution[1]
|
134 |
+
# self.mask_embedding = copy.deepcopy(self.patch_embed)
|
135 |
+
# self.mask_embedding.norm = None
|
136 |
+
|
137 |
+
def init_weights(self):
|
138 |
+
super(MAEViT, self).init_weights()
|
139 |
+
if not (isinstance(self.init_cfg, dict)
|
140 |
+
and self.init_cfg['type'] == 'Pretrained'):
|
141 |
+
# initialize position embedding in backbone
|
142 |
+
pos_embed = build_2d_sincos_position_embedding(
|
143 |
+
self.patch_resolution,
|
144 |
+
self.pos_embed.shape[-1],
|
145 |
+
cls_token=True)
|
146 |
+
self.pos_embed.data.copy_(pos_embed.float())
|
147 |
+
|
148 |
+
w = self.patch_embed.projection.weight.data
|
149 |
+
torch.nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
|
150 |
+
|
151 |
+
torch.nn.init.normal_(self.cls_token, std=.02)
|
152 |
+
|
153 |
+
self.apply(self._init_weights)
|
154 |
+
|
155 |
+
# mask_embedding transfers pixel level mask to token level
|
156 |
+
# self.mask_embedding.apply(self._init_mask_embedding)
|
157 |
+
# for para in self.mask_embedding.parameters():
|
158 |
+
# para.requires_grad = False
|
159 |
+
|
160 |
+
def _init_mask_embedding(self,m):
|
161 |
+
if hasattr(m,'weight'):
|
162 |
+
nn.init.constant_(m.weight,1.0)
|
163 |
+
if hasattr(m, 'bias'):
|
164 |
+
nn.init.constant_(m.bias,0)
|
165 |
+
|
166 |
+
def _init_weights(self, m):
|
167 |
+
|
168 |
+
if isinstance(m, nn.Linear):
|
169 |
+
torch.nn.init.xavier_uniform_(m.weight)
|
170 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
171 |
+
nn.init.constant_(m.bias, 0)
|
172 |
+
elif isinstance(m, nn.LayerNorm):
|
173 |
+
nn.init.constant_(m.bias, 0)
|
174 |
+
nn.init.constant_(m.weight, 1.0)
|
175 |
+
|
176 |
+
def random_masking(self, x, mask_ratio=0.75, attn_mask=None):
|
177 |
+
"""Generate the mask for MAE Pre-training.
|
178 |
+
|
179 |
+
Args:
|
180 |
+
x (torch.tensor): Image with data augmentation applied.
|
181 |
+
mask_ratio (float): The mask ratio of total patches.
|
182 |
+
Defaults to 0.75.
|
183 |
+
|
184 |
+
Returns:
|
185 |
+
tuple[Tensor, Tensor, Tensor]: masked image, mask and the ids
|
186 |
+
to restore original image.
|
187 |
+
|
188 |
+
- x_masked (Tensor): masked image.
|
189 |
+
- mask (Tensor): mask used to mask image.
|
190 |
+
- ids_restore (Tensor): ids to restore original image.
|
191 |
+
"""
|
192 |
+
N, L, D = x.shape # batch, length, dim
|
193 |
+
len_keep = int(L * (1 - mask_ratio))
|
194 |
+
|
195 |
+
noise = torch.rand(N, L, device=x.device) # noise in [0, 1]
|
196 |
+
|
197 |
+
# sort noise for each sample
|
198 |
+
ids_shuffle = torch.argsort(
|
199 |
+
noise, dim=1) # ascend: small is keep, large is remove
|
200 |
+
ids_restore = torch.argsort(ids_shuffle, dim=1)
|
201 |
+
|
202 |
+
# keep the first subset
|
203 |
+
ids_keep = ids_shuffle[:, :len_keep]
|
204 |
+
x_masked = torch.gather(
|
205 |
+
x, dim=1, index=ids_keep.unsqueeze(-1).repeat(1, 1, D))
|
206 |
+
# modified_attn_mask = None if attn_mask is None else torch.gather(attn_mask,dim=1, index=ids_keep)
|
207 |
+
|
208 |
+
# generate the binary mask: 0 is keep, 1 is remove
|
209 |
+
mask = torch.ones([N, L], device=x.device)
|
210 |
+
mask[:, :len_keep] = 0
|
211 |
+
# unshuffle to get the binary mask
|
212 |
+
mask = torch.gather(mask, dim=1, index=ids_restore)
|
213 |
+
|
214 |
+
return x_masked, mask, ids_restore #, modified_attn_mask
|
215 |
+
|
216 |
+
def generate_mask(self, pixel_level_attn_mask):
|
217 |
+
'''
|
218 |
+
pixel_level_attn_mask: (0,1) attn mask with the same shape as img
|
219 |
+
'''
|
220 |
+
if pixel_level_attn_mask is None: return None
|
221 |
+
# H, W = patch_resolution
|
222 |
+
# B, C = pixel_level_attn_mask.shape[:2]
|
223 |
+
# attn_mask = torch.ones((B,C,H,W),device=pixel_level_attn_mask)
|
224 |
+
# H_splited = torch.chunk(pixel_level_attn_mask, H, -2)
|
225 |
+
# HW_splited_mask = (torch.chunk(Hs, W, -1) for Hs in H_splited)
|
226 |
+
|
227 |
+
# if HW_splited_mask[:,:,hi,wi].sum().item() == 0:
|
228 |
+
# attn_mask[:,:,hi,wi] = 0
|
229 |
+
|
230 |
+
# mask_patches = self.mask_embedding(pixel_level_attn_mask)[0]
|
231 |
+
# attn_mask = mask_patches.sum(-1) != 0
|
232 |
+
|
233 |
+
# return attn_mask
|
234 |
+
|
235 |
+
def extract_feat(self, img ,attn_mask=None):
|
236 |
+
x, *_ = self.forward(img,attn_mask)
|
237 |
+
if self.output_cls_token:
|
238 |
+
return x[:,0,:]
|
239 |
+
else:
|
240 |
+
return torch.mean(x,dim=1)
|
241 |
+
|
242 |
+
def forward(self, x, attn_mask=None):
|
243 |
+
if attn_mask is not None: assert self.output_cls_token
|
244 |
+
|
245 |
+
B = x.shape[0]
|
246 |
+
x = self.patch_embed(x)[0]
|
247 |
+
# add pos embed w/o cls token
|
248 |
+
x = x + self.pos_embed[:, 1:1+x.shape[1], :]
|
249 |
+
# masking: length -> length * mask_ratio
|
250 |
+
if True:
|
251 |
+
assert self.mask_ratio == 0.
|
252 |
+
else:
|
253 |
+
x, mask, ids_restore = self.random_masking(x, self.mask_ratio)
|
254 |
+
|
255 |
+
# append cls token
|
256 |
+
cls_token = self.cls_token + self.pos_embed[:, :1, :]
|
257 |
+
cls_tokens = cls_token.expand(B, -1, -1)
|
258 |
+
x = torch.cat((cls_tokens, x), dim=1)
|
259 |
+
x = self.drop_after_pos(x)
|
260 |
+
# if attn_mask is not None:
|
261 |
+
# attn_mask = torch.concat((torch.ones((B,1),device=attn_mask.device) , attn_mask),dim=1)
|
262 |
+
|
263 |
+
for i, layer in enumerate(self.layers):
|
264 |
+
if self.gradientCKPT:
|
265 |
+
x = checkpoint(layer,x) # ,attn_mask
|
266 |
+
else:
|
267 |
+
x = layer(x) # ,attn_mask
|
268 |
+
if i == len(self.layers) - 1 and self.final_norm:
|
269 |
+
x = self.norm1(x)
|
270 |
+
if True:
|
271 |
+
return x
|
272 |
+
else:
|
273 |
+
return (x, mask, ids_restore)
|
274 |
+
|
275 |
+
def forward_generator(self, x, attn_mask=None):
|
276 |
+
if attn_mask is not None: assert self.output_cls_token
|
277 |
+
|
278 |
+
B = x.shape[0]
|
279 |
+
x = self.patch_embed(x)[0]
|
280 |
+
# add pos embed w/o cls token
|
281 |
+
x = x + self.pos_embed[:, 1:1+x.shape[1], :]
|
282 |
+
|
283 |
+
# append cls token
|
284 |
+
cls_token = self.cls_token + self.pos_embed[:, :1, :]
|
285 |
+
cls_tokens = cls_token.expand(B, -1, -1)
|
286 |
+
x = torch.cat((cls_tokens, x), dim=1)
|
287 |
+
x = self.drop_after_pos(x)
|
288 |
+
|
289 |
+
for i, layer in enumerate(self.layers):
|
290 |
+
if self.gradientCKPT:
|
291 |
+
x = checkpoint(layer,x) # ,attn_mask
|
292 |
+
else:
|
293 |
+
x = layer(x) # ,attn_mask
|
294 |
+
|
295 |
+
if i == len(self.layers) - 1 and self.final_norm:
|
296 |
+
x = self.norm1(x)
|
297 |
+
|
298 |
+
x = x if (new_x:=(yield x)) is None else new_x
|
299 |
+
|
300 |
+
debug = False
|
301 |
+
if debug:
|
302 |
+
print(f'layer {i}-th forwarded')
|
303 |
+
|
vision_transformer.py
ADDED
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from functools import reduce
|
3 |
+
from operator import mul
|
4 |
+
from ipdb import set_trace
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.nn.functional as F
|
8 |
+
import torch.nn as nn
|
9 |
+
from mmcls.models.backbones import VisionTransformer as _VisionTransformer
|
10 |
+
from mmcls.models.utils import to_2tuple
|
11 |
+
from mmcv.cnn.bricks.transformer import PatchEmbed
|
12 |
+
from torch.nn.modules.batchnorm import _BatchNorm
|
13 |
+
|
14 |
+
|
15 |
+
def build_2d_sincos_position_embedding(patches_resolution,
|
16 |
+
embed_dims,
|
17 |
+
temperature=10000.,
|
18 |
+
cls_token=False):
|
19 |
+
"""The function is to build position embedding for model to obtain the
|
20 |
+
position information of the image patches."""
|
21 |
+
|
22 |
+
if isinstance(patches_resolution, int):
|
23 |
+
patches_resolution = (patches_resolution, patches_resolution)
|
24 |
+
|
25 |
+
h, w = patches_resolution
|
26 |
+
grid_w = torch.arange(w, dtype=torch.float32)
|
27 |
+
grid_h = torch.arange(h, dtype=torch.float32)
|
28 |
+
grid_w, grid_h = torch.meshgrid(grid_w, grid_h)
|
29 |
+
assert embed_dims % 4 == 0, \
|
30 |
+
'Embed dimension must be divisible by 4.'
|
31 |
+
pos_dim = embed_dims // 4
|
32 |
+
|
33 |
+
omega = torch.arange(pos_dim, dtype=torch.float32) / pos_dim
|
34 |
+
omega = 1. / (temperature**omega)
|
35 |
+
out_w = torch.einsum('m,d->md', [grid_w.flatten(), omega])
|
36 |
+
out_h = torch.einsum('m,d->md', [grid_h.flatten(), omega])
|
37 |
+
|
38 |
+
pos_emb = torch.cat(
|
39 |
+
[
|
40 |
+
torch.sin(out_w),
|
41 |
+
torch.cos(out_w),
|
42 |
+
torch.sin(out_h),
|
43 |
+
torch.cos(out_h)
|
44 |
+
],
|
45 |
+
dim=1,
|
46 |
+
)[None, :, :]
|
47 |
+
|
48 |
+
if cls_token:
|
49 |
+
cls_token_pe = torch.zeros([1, 1, embed_dims], dtype=torch.float32)
|
50 |
+
pos_emb = torch.cat([cls_token_pe, pos_emb], dim=1)
|
51 |
+
|
52 |
+
return pos_emb
|
53 |
+
|
54 |
+
|
55 |
+
class VisionTransformer(_VisionTransformer):
|
56 |
+
"""Vision Transformer.
|
57 |
+
|
58 |
+
A pytorch implement of: `An Images is Worth 16x16 Words: Transformers for
|
59 |
+
Image Recognition at Scale <https://arxiv.org/abs/2010.11929>`_.
|
60 |
+
|
61 |
+
Part of the code is modified from:
|
62 |
+
`<https://github.com/facebookresearch/moco-v3/blob/main/vits.py>`_.
|
63 |
+
|
64 |
+
Args:
|
65 |
+
stop_grad_conv1 (bool, optional): whether to stop the gradient of
|
66 |
+
convolution layer in `PatchEmbed`. Defaults to False.
|
67 |
+
frozen_stages (int): Stages to be frozen (stop grad and set eval mode).
|
68 |
+
-1 means not freezing any parameters. Defaults to -1.
|
69 |
+
norm_eval (bool): Whether to set norm layers to eval mode, namely,
|
70 |
+
freeze running stats (mean and var). Note: Effect on Batch Norm
|
71 |
+
and its variants only. Defaults to False.
|
72 |
+
init_cfg (dict or list[dict], optional): Initialization config dict.
|
73 |
+
Defaults to None.
|
74 |
+
"""
|
75 |
+
|
76 |
+
arch_zoo = {
|
77 |
+
**dict.fromkeys(
|
78 |
+
['mocov3-s', 'mocov3-small'], {
|
79 |
+
'embed_dims': 384,
|
80 |
+
'num_layers': 12,
|
81 |
+
'num_heads': 12,
|
82 |
+
'feedforward_channels': 1536,
|
83 |
+
}),
|
84 |
+
**dict.fromkeys(
|
85 |
+
['b', 'base'], {
|
86 |
+
'embed_dims': 768,
|
87 |
+
'num_layers': 12,
|
88 |
+
'num_heads': 12,
|
89 |
+
'feedforward_channels': 3072
|
90 |
+
}),
|
91 |
+
}
|
92 |
+
|
93 |
+
def __init__(self,
|
94 |
+
stop_grad_conv1=False,
|
95 |
+
frozen_stages=-1,
|
96 |
+
norm_eval=False,
|
97 |
+
init_cfg=None,
|
98 |
+
**kwargs):
|
99 |
+
super(VisionTransformer, self).__init__(init_cfg=init_cfg,)
|
100 |
+
self.patch_size = kwargs['patch_size']
|
101 |
+
self.frozen_stages = frozen_stages
|
102 |
+
self.norm_eval = norm_eval
|
103 |
+
self.init_cfg = init_cfg
|
104 |
+
|
105 |
+
|
106 |
+
if isinstance(self.patch_embed, PatchEmbed):
|
107 |
+
if stop_grad_conv1:
|
108 |
+
self.patch_embed.projection.weight.requires_grad = False
|
109 |
+
self.patch_embed.projection.bias.requires_grad = False
|
110 |
+
|
111 |
+
self._freeze_stages()
|
112 |
+
|
113 |
+
def init_weights(self):
|
114 |
+
super(VisionTransformer, self).init_weights()
|
115 |
+
|
116 |
+
if not (isinstance(self.init_cfg, dict)
|
117 |
+
and self.init_cfg['type'] == 'Pretrained'):
|
118 |
+
|
119 |
+
# Use fixed 2D sin-cos position embedding
|
120 |
+
pos_emb = build_2d_sincos_position_embedding(
|
121 |
+
patches_resolution=self.patch_resolution,
|
122 |
+
embed_dims=self.embed_dims,
|
123 |
+
cls_token=True)
|
124 |
+
self.pos_embed.data.copy_(pos_emb)
|
125 |
+
self.pos_embed.requires_grad = False
|
126 |
+
|
127 |
+
# xavier_uniform initialization for PatchEmbed
|
128 |
+
if isinstance(self.patch_embed, PatchEmbed):
|
129 |
+
val = math.sqrt(
|
130 |
+
6. / float(3 * reduce(mul, to_2tuple(self.patch_size), 1) +
|
131 |
+
self.embed_dims))
|
132 |
+
nn.init.uniform_(self.patch_embed.projection.weight, -val, val)
|
133 |
+
nn.init.zeros_(self.patch_embed.projection.bias)
|
134 |
+
|
135 |
+
# initialization for linear layers
|
136 |
+
for name, m in self.named_modules():
|
137 |
+
if isinstance(m, nn.Linear):
|
138 |
+
if 'qkv' in name:
|
139 |
+
# treat the weights of Q, K, V separately
|
140 |
+
val = math.sqrt(
|
141 |
+
6. /
|
142 |
+
float(m.weight.shape[0] // 3 + m.weight.shape[1]))
|
143 |
+
nn.init.uniform_(m.weight, -val, val)
|
144 |
+
else:
|
145 |
+
nn.init.xavier_uniform_(m.weight)
|
146 |
+
nn.init.zeros_(m.bias)
|
147 |
+
nn.init.normal_(self.cls_token, std=1e-6)
|
148 |
+
|
149 |
+
def _freeze_stages(self):
|
150 |
+
"""Freeze patch_embed layer, some parameters and stages."""
|
151 |
+
if self.frozen_stages >= 0:
|
152 |
+
self.patch_embed.eval()
|
153 |
+
for param in self.patch_embed.parameters():
|
154 |
+
param.requires_grad = False
|
155 |
+
|
156 |
+
self.cls_token.requires_grad = False
|
157 |
+
self.pos_embed.requires_grad = False
|
158 |
+
|
159 |
+
for i in range(1, self.frozen_stages + 1):
|
160 |
+
m = self.layers[i - 1]
|
161 |
+
m.eval()
|
162 |
+
for param in m.parameters():
|
163 |
+
param.requires_grad = False
|
164 |
+
|
165 |
+
if i == (self.num_layers) and self.final_norm:
|
166 |
+
for param in getattr(self, 'norm1').parameters():
|
167 |
+
param.requires_grad = False
|
168 |
+
|
169 |
+
def train(self, mode=True):
|
170 |
+
super(VisionTransformer, self).train(mode)
|
171 |
+
self._freeze_stages()
|
172 |
+
if mode and self.norm_eval:
|
173 |
+
for m in self.modules():
|
174 |
+
# trick: eval have effect on BatchNorm only
|
175 |
+
if isinstance(m, _BatchNorm):
|
176 |
+
m.eval()
|