--- license: mit datasets: - universeTBD/arxiv-astro-abstracts-all language: - en metrics: - perplexity pipeline_tag: text-generation tags: - llama-2 - astronomy - astrophysics - arxiv inference: false ---
## Loading the model ```python from transformers import AutoModelForCausalLM from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained( pretrained_model_name_or_path="universeTBD/astrollama" ) model = AutoModelForCausalLM.from_pretrained( pretrained_model_name_or_path="universeTBD/astrollama", device_map="auto", ) ``` ## Generating text from a prompt ```python import torch from transformers import pipeline generator = pipeline( task="text-generation", model=model, tokenizer=tokenizer, device_map="auto" ) # Taken from https://arxiv.org/abs/2308.12823 prompt = "In this letter, we report the discovery of the highest redshift, " \ "heavily obscured, radio-loud QSO candidate selected using JWST NIRCam/MIRI, " \ "mid-IR, sub-mm, and radio imaging in the COSMOS-Web field. " # For reproducibility torch.manual_seed(42) generated_text = generator( prompt, do_sample=True, max_length=512 ) ``` ## Embedding text with AstroLLaMA ```python texts = [ "Abstract 1", "Abstract 2" ] inputs = tokenizer( texts, return_tensors="pt", return_token_type_ids=False, padding=True, truncation=True, max_length=4096 ) inputs.to(model.device) outputs = model(**inputs, output_hidden_states=True) # Last layer of the hidden states. Get average embedding of all tokens embeddings = outputs["hidden_states"][-1][:, :, ...].mean().detach().cpu().numpy() ```