Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1394.32 +/- 75.71
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:95d827881a1fa248e40b6b2e548bf2b7c4ae12c9a16842f43c8fbf1a3260994b
|
3 |
+
size 129260
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fc6af67e940>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc6af67e9d0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc6af67ea60>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc6af67eaf0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fc6af67eb80>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fc6af67ec10>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fc6af67eca0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc6af67ed30>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fc6af67edc0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc6af67ee50>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc6af67eee0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc6af67ef70>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7fc6af681060>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1673983869149445843,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAANLt8D6w1gK/5V1UPjMI0j4TOWTAP7aZP709Wz7EnYi/khqWP/T/BD8MS30/8pA3v3OWGL8KMGLAYd18PSoZ9b4lbm+/tQ/Gv/hzWj///Co8pYt9P35Ihzzr346/YrlvPog3Nz8MWL0+LAIJP3xVjL9dP5Q/hwvlvlLihz4eyII/8n6+v4HOhT/+05O+M+Fjv3flvD9M+pC7NgYAQPnhmL3hrYK98pRGwHgO2D6T8ry/GcjSPsr97L8yTAa/fZxwvZgIY7/v3EI/L0RzvqNDXsCINzc/jA8twCwCCT98VYy/kMHUPhLTC76j8vo+PurTP6evhr/iW4w/ANDpPlqmk79h6oc/W4HgPzqbuD8Tyiy+DtpbPkms3L8aKgA/PcRev4vaor1uW/S+n7VaP2J8MTyAPCi/CtvdPUxn9b5/hTjAiDc3PwxYvT4sAgk/fFWMvxn6ej/EQPi+zVltPiOLCj+GjaW/AXCAPzhf8b4INs2/kvSnP59XwLtvp8E/x6Dkva3eob+t70nAYCoJPu3Itb91gby+HUXgvyvkvj5gFMk+6QZfv6D1cT9W8Iq/s8dbvIg3Nz8MWL0+LAIJP3xVjL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADU6AE3AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAXL5XvQAAAAC2x9y/AAAAAFzQkj0AAAAAstPhPwAAAAC1Fac9AAAAAETi3T8AAAAAcDwHvgAAAADcHfC/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAw75itgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJ8snb0AAAAAazjlvwAAAAD5mVW7AAAAAI6x/T8AAAAAuJ4CvgAAAAD8ie0/AAAAANZdsD0AAAAAsVD4vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAN3mbbYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIByF5A9AAAAACnA878AAAAAsWiyPQAAAAAPRO8/AAAAABP/1r0AAAAAKD7gPwAAAAA9iYA9AAAAAAmr7r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABEPcW0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA0wy0PQAAAAC5POO/AAAAALYUdrsAAAAAXfzlPwAAAAAx6ag8AAAAAOvu4z8AAAAA4fFgvQAAAACUt9u/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJVKQggX/HaMAWyUTegDjAF0lEdAqRiJ3kgfVHV9lChoBkdAmpI2D6Fds2gHTegDaAhHQKkYvTn7pFF1fZQoaAZHQJaaAGVzIWBoB03oA2gIR0CpG7LOAy2ydX2UKGgGR0CWdQG2kSElaAdN6ANoCEdAqSB77655JXV9lChoBkdAk7z5FTefqWgHTegDaAhHQKkljTsIE8t1fZQoaAZHQJc8KHYYixFoB03oA2gIR0CpJcAvL5h0dX2UKGgGR0CXpRnnuAqeaAdN6ANoCEdAqSiaptJnQXV9lChoBkdAlHfw1FYuCmgHTegDaAhHQKktRuBMBZJ1fZQoaAZHQJWCEByS3b5oB03oA2gIR0CpMkwv6CUYdX2UKGgGR0CTQu2iL2pRaAdN6ANoCEdAqTJ+OZLIxXV9lChoBkdAldNDZtelbmgHTegDaAhHQKk1jKPn0TV1fZQoaAZHQJdK7lfZ26loB03oA2gIR0CpOnChFmWddX2UKGgGR0CU/8DQ7cO9aAdN6ANoCEdAqT9twDNhVnV9lChoBkdAlW3VaSs8xWgHTegDaAhHQKk/sfSQYDV1fZQoaAZHQJFmRY+0PYpoB03oA2gIR0CpQthuXNTtdX2UKGgGR0CScY8ujASGaAdN6ANoCEdAqUf6BK+SKXV9lChoBkdAimDABtDUmWgHTegDaAhHQKlPhPTodMl1fZQoaAZHQJJho0waisZoB03oA2gIR0CpT9hJAdGRdX2UKGgGR0CRJ7KVY6n0aAdN6ANoCEdAqVM6ODJ2dXV9lChoBkdAkbfDFl05l2gHTegDaAhHQKlYR4SHuZ11fZQoaAZHQJYFf9YOlO5oB03oA2gIR0CpXaHvDxb0dX2UKGgGR0CNfkaZx7zDaAdN6ANoCEdAqV3Z0lqrR3V9lChoBkdAkvlXW4EwFmgHTegDaAhHQKlg4nYxtYV1fZQoaAZHQI4LaqdYnv5oB03oA2gIR0CpZehkAggYdX2UKGgGR0CPiklP8AJcaAdN6ANoCEdAqWtDOTq0MXV9lChoBkdAixKkBjnV5WgHTegDaAhHQKlrdovBacJ1fZQoaAZHQJMeM+bExZdoB03oA2gIR0CpbllGPPszdX2UKGgGR0CSKpglnh86aAdN6ANoCEdAqXLsNhE0BXV9lChoBkdAknNZ7CzkZWgHTegDaAhHQKl4ALy+YdB1fZQoaAZHQIhHGvMbFS9oB03oA2gIR0CpeDZCngpCdX2UKGgGR0CT75mgam4zaAdN6ANoCEdAqXsiYkVvdnV9lChoBkdAlL7raEi+tmgHTegDaAhHQKl/oz0HyEt1fZQoaAZHQJSwVJUYKploB03oA2gIR0CphJt+LFXJdX2UKGgGR0CVPhwvQF9saAdN6ANoCEdAqYTMXm/34HV9lChoBkdAlAb6bKA8S2gHTegDaAhHQKmHqCZF5Od1fZQoaAZHQJOZ6LYPGyZoB03oA2gIR0CpjB6nrIHUdX2UKGgGR0CS2ll9BrvcaAdN6ANoCEdAqZEri0fHP3V9lChoBkdAkzPNEXtSh2gHTegDaAhHQKmRXazu4PR1fZQoaAZHQJSVENNJvpBoB03oA2gIR0CplD/16E8JdX2UKGgGR0CUN9oXbdrPaAdN6ANoCEdAqZjNV1fVqnV9lChoBkdAlJZvfKp1imgHTegDaAhHQKmd2k2P1ct1fZQoaAZHQJXd8VeruIBoB03oA2gIR0Cpng8sDnvEdX2UKGgGR0CUiWiml67eaAdN6ANoCEdAqaDzROUMX3V9lChoBkdAliKjcynDSGgHTegDaAhHQKmllbC79Q51fZQoaAZHQJeGDvYvnKZoB03oA2gIR0Cpqqq8DjiodX2UKGgGR0CWyit3fQ8faAdN6ANoCEdAqardwJgLJHV9lChoBkdAlYL7QXyiEmgHTegDaAhHQKmtvBj4Hop1fZQoaAZHQJd5AFxGUfRoB03oA2gIR0CpskK64Ds/dX2UKGgGR0CVbvhgmZ3LaAdN6ANoCEdAqbdMSElE7XV9lChoBkdAkx7KWszVMGgHTegDaAhHQKm3f876pHZ1fZQoaAZHQJMnFsi0OVhoB03oA2gIR0CpulXT/hl2dX2UKGgGR0CXdQ/M4cWCaAdN6ANoCEdAqb7fTEzfrXV9lChoBkdAkTcQ7tAs1GgHTegDaAhHQKnD86VdHDt1fZQoaAZHQJbWSed07r9oB03oA2gIR0CpxCbgjyFxdX2UKGgGR0CWHQF0xM37aAdN6ANoCEdAqccB8QZn+XV9lChoBkdAl541gx8D0WgHTegDaAhHQKnLfc/t6X11fZQoaAZHQJF4Gih37k5oB03oA2gIR0Cp0J7LlmvodX2UKGgGR0CWX7BEKE39aAdN6ANoCEdAqdDUygwoLHV9lChoBkdAkpPedbxEv2gHTegDaAhHQKnT2v38GcF1fZQoaAZHQJLvctYjjaRoB03oA2gIR0Cp2HscZLqVdX2UKGgGR0CYbgwn6VMVaAdN6ANoCEdAqd1+nbZezHV9lChoBkdAlids0xdpqWgHTegDaAhHQKndsZ2IO6N1fZQoaAZHQJTjHoq0+khoB03oA2gIR0Cp4I9GiHqNdX2UKGgGR0CWVncHGCI2aAdN6ANoCEdAqeUWHnEET3V9lChoBkdAjLMREfDDTGgHTegDaAhHQKnqLuv2XcB1fZQoaAZHQJh9AlQdjoZoB03oA2gIR0Cp6mS+6Ae8dX2UKGgGR0CUdMQ1JlJ6aAdN6ANoCEdAqe1TjFQ2uXV9lChoBkdAmDs68QI2O2gHTegDaAhHQKnx4xEfDDV1fZQoaAZHQJhEdl+Vkc1oB03oA2gIR0Cp9uazE74jdX2UKGgGR0CTE43QD3dsaAdN6ANoCEdAqfcacLBsRHV9lChoBkdAl+v01AJLNGgHTegDaAhHQKn5+LeANG51fZQoaAZHQJdzsuzyBkJoB03oA2gIR0Cp/obSZ0CBdX2UKGgGR0CbStPHDJlraAdN6ANoCEdAqgOXqZ+hG3V9lChoBkdAmDhfViF0xWgHTegDaAhHQKoDy6gdwNt1fZQoaAZHQJlBD9Nvfj1oB03oA2gIR0CqBqltsN2DdX2UKGgGR0CX1t8HfMwDaAdN6ANoCEdAqgtLv/io9HV9lChoBkdAl2GJpnHvMWgHTegDaAhHQKoQhzzVc2R1fZQoaAZHQJfuraJyhi9oB03oA2gIR0CqEMdxQzk7dX2UKGgGR0CWv3vN/vv0aAdN6ANoCEdAqhPPo3aSLnV9lChoBkdAlAcCpNsWPGgHTegDaAhHQKoYVQLux8l1fZQoaAZHQJcyzcIqsltoB03oA2gIR0CqHZa+36RAdX2UKGgGR0CWbtv2GqPwaAdN6ANoCEdAqh3NFjNILHV9lChoBkdAk7zoPkJa7mgHTegDaAhHQKohb6yB06p1fZQoaAZHQJfdlvbXYlJoB03oA2gIR0CqJxG3vx6OdX2UKGgGR0CVf3+B6KLsaAdN6ANoCEdAqi1YTEit73V9lChoBkdAlu/lFDv3J2gHTegDaAhHQKotj+Zw4sF1fZQoaAZHQJZU7fbblBBoB03oA2gIR0CqMS80cfeUdX2UKGgGR0CSv4zzVc2SaAdN6ANoCEdAqjaapT/ACXV9lChoBkdAlHdFBMSK32gHTegDaAhHQKo77SE12q11fZQoaAZHQI7hzO1OTJRoB03oA2gIR0CqPCWjoIOZdX2UKGgGR0CVW5wxFiKBaAdN6ANoCEdAqj8OR/3Fk3V9lChoBkdAlJ+gB1cMVmgHTegDaAhHQKpDsaHbh3t1fZQoaAZHQJPPBPgvUSZoB03oA2gIR0CqSN5U1hsqdX2UKGgGR0CTOAVX3g1naAdN6ANoCEdAqkkSUNayKXV9lChoBkdAlMPJbpu/DmgHTegDaAhHQKpL9Dst03h1fZQoaAZHQJTG7Dxb0OFoB03oA2gIR0CqUMf0dzXCdX2UKGgGR0CWFjcAR02caAdN6ANoCEdAqlXhgeA/cHV9lChoBkdAk1s86mwaBWgHTegDaAhHQKpWFI7vG6x1fZQoaAZHQJSCMir1dxBoB03oA2gIR0CqWQhFEy+IdX2UKGgGR0CVMCjGkvboaAdN6ANoCEdAql2B/RVp9XVlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fe450f0be5a9181a0a1d0479c51492de52824fb96f1b759eec8057469c6051f8
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7430262ebacbd6a726b04d5ddc71ce76a92054ed59564a9bb3722d7f8d424a21
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.0+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc6af67e940>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc6af67e9d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc6af67ea60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc6af67eaf0>", "_build": "<function ActorCriticPolicy._build at 0x7fc6af67eb80>", "forward": "<function ActorCriticPolicy.forward at 0x7fc6af67ec10>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fc6af67eca0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc6af67ed30>", "_predict": "<function ActorCriticPolicy._predict at 0x7fc6af67edc0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc6af67ee50>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc6af67eee0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc6af67ef70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fc6af681060>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673983869149445843, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAANLt8D6w1gK/5V1UPjMI0j4TOWTAP7aZP709Wz7EnYi/khqWP/T/BD8MS30/8pA3v3OWGL8KMGLAYd18PSoZ9b4lbm+/tQ/Gv/hzWj///Co8pYt9P35Ihzzr346/YrlvPog3Nz8MWL0+LAIJP3xVjL9dP5Q/hwvlvlLihz4eyII/8n6+v4HOhT/+05O+M+Fjv3flvD9M+pC7NgYAQPnhmL3hrYK98pRGwHgO2D6T8ry/GcjSPsr97L8yTAa/fZxwvZgIY7/v3EI/L0RzvqNDXsCINzc/jA8twCwCCT98VYy/kMHUPhLTC76j8vo+PurTP6evhr/iW4w/ANDpPlqmk79h6oc/W4HgPzqbuD8Tyiy+DtpbPkms3L8aKgA/PcRev4vaor1uW/S+n7VaP2J8MTyAPCi/CtvdPUxn9b5/hTjAiDc3PwxYvT4sAgk/fFWMvxn6ej/EQPi+zVltPiOLCj+GjaW/AXCAPzhf8b4INs2/kvSnP59XwLtvp8E/x6Dkva3eob+t70nAYCoJPu3Itb91gby+HUXgvyvkvj5gFMk+6QZfv6D1cT9W8Iq/s8dbvIg3Nz8MWL0+LAIJP3xVjL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADU6AE3AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAXL5XvQAAAAC2x9y/AAAAAFzQkj0AAAAAstPhPwAAAAC1Fac9AAAAAETi3T8AAAAAcDwHvgAAAADcHfC/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAw75itgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJ8snb0AAAAAazjlvwAAAAD5mVW7AAAAAI6x/T8AAAAAuJ4CvgAAAAD8ie0/AAAAANZdsD0AAAAAsVD4vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAN3mbbYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIByF5A9AAAAACnA878AAAAAsWiyPQAAAAAPRO8/AAAAABP/1r0AAAAAKD7gPwAAAAA9iYA9AAAAAAmr7r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABEPcW0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA0wy0PQAAAAC5POO/AAAAALYUdrsAAAAAXfzlPwAAAAAx6ag8AAAAAOvu4z8AAAAA4fFgvQAAAACUt9u/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJVKQggX/HaMAWyUTegDjAF0lEdAqRiJ3kgfVHV9lChoBkdAmpI2D6Fds2gHTegDaAhHQKkYvTn7pFF1fZQoaAZHQJaaAGVzIWBoB03oA2gIR0CpG7LOAy2ydX2UKGgGR0CWdQG2kSElaAdN6ANoCEdAqSB77655JXV9lChoBkdAk7z5FTefqWgHTegDaAhHQKkljTsIE8t1fZQoaAZHQJc8KHYYixFoB03oA2gIR0CpJcAvL5h0dX2UKGgGR0CXpRnnuAqeaAdN6ANoCEdAqSiaptJnQXV9lChoBkdAlHfw1FYuCmgHTegDaAhHQKktRuBMBZJ1fZQoaAZHQJWCEByS3b5oB03oA2gIR0CpMkwv6CUYdX2UKGgGR0CTQu2iL2pRaAdN6ANoCEdAqTJ+OZLIxXV9lChoBkdAldNDZtelbmgHTegDaAhHQKk1jKPn0TV1fZQoaAZHQJdK7lfZ26loB03oA2gIR0CpOnChFmWddX2UKGgGR0CU/8DQ7cO9aAdN6ANoCEdAqT9twDNhVnV9lChoBkdAlW3VaSs8xWgHTegDaAhHQKk/sfSQYDV1fZQoaAZHQJFmRY+0PYpoB03oA2gIR0CpQthuXNTtdX2UKGgGR0CScY8ujASGaAdN6ANoCEdAqUf6BK+SKXV9lChoBkdAimDABtDUmWgHTegDaAhHQKlPhPTodMl1fZQoaAZHQJJho0waisZoB03oA2gIR0CpT9hJAdGRdX2UKGgGR0CRJ7KVY6n0aAdN6ANoCEdAqVM6ODJ2dXV9lChoBkdAkbfDFl05l2gHTegDaAhHQKlYR4SHuZ11fZQoaAZHQJYFf9YOlO5oB03oA2gIR0CpXaHvDxb0dX2UKGgGR0CNfkaZx7zDaAdN6ANoCEdAqV3Z0lqrR3V9lChoBkdAkvlXW4EwFmgHTegDaAhHQKlg4nYxtYV1fZQoaAZHQI4LaqdYnv5oB03oA2gIR0CpZehkAggYdX2UKGgGR0CPiklP8AJcaAdN6ANoCEdAqWtDOTq0MXV9lChoBkdAixKkBjnV5WgHTegDaAhHQKlrdovBacJ1fZQoaAZHQJMeM+bExZdoB03oA2gIR0CpbllGPPszdX2UKGgGR0CSKpglnh86aAdN6ANoCEdAqXLsNhE0BXV9lChoBkdAknNZ7CzkZWgHTegDaAhHQKl4ALy+YdB1fZQoaAZHQIhHGvMbFS9oB03oA2gIR0CpeDZCngpCdX2UKGgGR0CT75mgam4zaAdN6ANoCEdAqXsiYkVvdnV9lChoBkdAlL7raEi+tmgHTegDaAhHQKl/oz0HyEt1fZQoaAZHQJSwVJUYKploB03oA2gIR0CphJt+LFXJdX2UKGgGR0CVPhwvQF9saAdN6ANoCEdAqYTMXm/34HV9lChoBkdAlAb6bKA8S2gHTegDaAhHQKmHqCZF5Od1fZQoaAZHQJOZ6LYPGyZoB03oA2gIR0CpjB6nrIHUdX2UKGgGR0CS2ll9BrvcaAdN6ANoCEdAqZEri0fHP3V9lChoBkdAkzPNEXtSh2gHTegDaAhHQKmRXazu4PR1fZQoaAZHQJSVENNJvpBoB03oA2gIR0CplD/16E8JdX2UKGgGR0CUN9oXbdrPaAdN6ANoCEdAqZjNV1fVqnV9lChoBkdAlJZvfKp1imgHTegDaAhHQKmd2k2P1ct1fZQoaAZHQJXd8VeruIBoB03oA2gIR0Cpng8sDnvEdX2UKGgGR0CUiWiml67eaAdN6ANoCEdAqaDzROUMX3V9lChoBkdAliKjcynDSGgHTegDaAhHQKmllbC79Q51fZQoaAZHQJeGDvYvnKZoB03oA2gIR0Cpqqq8DjiodX2UKGgGR0CWyit3fQ8faAdN6ANoCEdAqardwJgLJHV9lChoBkdAlYL7QXyiEmgHTegDaAhHQKmtvBj4Hop1fZQoaAZHQJd5AFxGUfRoB03oA2gIR0CpskK64Ds/dX2UKGgGR0CVbvhgmZ3LaAdN6ANoCEdAqbdMSElE7XV9lChoBkdAkx7KWszVMGgHTegDaAhHQKm3f876pHZ1fZQoaAZHQJMnFsi0OVhoB03oA2gIR0CpulXT/hl2dX2UKGgGR0CXdQ/M4cWCaAdN6ANoCEdAqb7fTEzfrXV9lChoBkdAkTcQ7tAs1GgHTegDaAhHQKnD86VdHDt1fZQoaAZHQJbWSed07r9oB03oA2gIR0CpxCbgjyFxdX2UKGgGR0CWHQF0xM37aAdN6ANoCEdAqccB8QZn+XV9lChoBkdAl541gx8D0WgHTegDaAhHQKnLfc/t6X11fZQoaAZHQJF4Gih37k5oB03oA2gIR0Cp0J7LlmvodX2UKGgGR0CWX7BEKE39aAdN6ANoCEdAqdDUygwoLHV9lChoBkdAkpPedbxEv2gHTegDaAhHQKnT2v38GcF1fZQoaAZHQJLvctYjjaRoB03oA2gIR0Cp2HscZLqVdX2UKGgGR0CYbgwn6VMVaAdN6ANoCEdAqd1+nbZezHV9lChoBkdAlids0xdpqWgHTegDaAhHQKndsZ2IO6N1fZQoaAZHQJTjHoq0+khoB03oA2gIR0Cp4I9GiHqNdX2UKGgGR0CWVncHGCI2aAdN6ANoCEdAqeUWHnEET3V9lChoBkdAjLMREfDDTGgHTegDaAhHQKnqLuv2XcB1fZQoaAZHQJh9AlQdjoZoB03oA2gIR0Cp6mS+6Ae8dX2UKGgGR0CUdMQ1JlJ6aAdN6ANoCEdAqe1TjFQ2uXV9lChoBkdAmDs68QI2O2gHTegDaAhHQKnx4xEfDDV1fZQoaAZHQJhEdl+Vkc1oB03oA2gIR0Cp9uazE74jdX2UKGgGR0CTE43QD3dsaAdN6ANoCEdAqfcacLBsRHV9lChoBkdAl+v01AJLNGgHTegDaAhHQKn5+LeANG51fZQoaAZHQJdzsuzyBkJoB03oA2gIR0Cp/obSZ0CBdX2UKGgGR0CbStPHDJlraAdN6ANoCEdAqgOXqZ+hG3V9lChoBkdAmDhfViF0xWgHTegDaAhHQKoDy6gdwNt1fZQoaAZHQJlBD9Nvfj1oB03oA2gIR0CqBqltsN2DdX2UKGgGR0CX1t8HfMwDaAdN6ANoCEdAqgtLv/io9HV9lChoBkdAl2GJpnHvMWgHTegDaAhHQKoQhzzVc2R1fZQoaAZHQJfuraJyhi9oB03oA2gIR0CqEMdxQzk7dX2UKGgGR0CWv3vN/vv0aAdN6ANoCEdAqhPPo3aSLnV9lChoBkdAlAcCpNsWPGgHTegDaAhHQKoYVQLux8l1fZQoaAZHQJcyzcIqsltoB03oA2gIR0CqHZa+36RAdX2UKGgGR0CWbtv2GqPwaAdN6ANoCEdAqh3NFjNILHV9lChoBkdAk7zoPkJa7mgHTegDaAhHQKohb6yB06p1fZQoaAZHQJfdlvbXYlJoB03oA2gIR0CqJxG3vx6OdX2UKGgGR0CVf3+B6KLsaAdN6ANoCEdAqi1YTEit73V9lChoBkdAlu/lFDv3J2gHTegDaAhHQKotj+Zw4sF1fZQoaAZHQJZU7fbblBBoB03oA2gIR0CqMS80cfeUdX2UKGgGR0CSv4zzVc2SaAdN6ANoCEdAqjaapT/ACXV9lChoBkdAlHdFBMSK32gHTegDaAhHQKo77SE12q11fZQoaAZHQI7hzO1OTJRoB03oA2gIR0CqPCWjoIOZdX2UKGgGR0CVW5wxFiKBaAdN6ANoCEdAqj8OR/3Fk3V9lChoBkdAlJ+gB1cMVmgHTegDaAhHQKpDsaHbh3t1fZQoaAZHQJPPBPgvUSZoB03oA2gIR0CqSN5U1hsqdX2UKGgGR0CTOAVX3g1naAdN6ANoCEdAqkkSUNayKXV9lChoBkdAlMPJbpu/DmgHTegDaAhHQKpL9Dst03h1fZQoaAZHQJTG7Dxb0OFoB03oA2gIR0CqUMf0dzXCdX2UKGgGR0CWFjcAR02caAdN6ANoCEdAqlXhgeA/cHV9lChoBkdAk1s86mwaBWgHTegDaAhHQKpWFI7vG6x1fZQoaAZHQJSCMir1dxBoB03oA2gIR0CqWQhFEy+IdX2UKGgGR0CVMCjGkvboaAdN6ANoCEdAql2B/RVp9XVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7313c3d912471038cd2f34ec9d2aa8bc9cd2c7584c7f099b355f629f7a622ad9
|
3 |
+
size 1171012
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1394.3193330699505, "std_reward": 75.70906294312384, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-17T20:33:01.914759"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ccc16a08f5ba0340767001dfbf98abaacf811eb04c93b272043f51d076f62c35
|
3 |
+
size 2521
|