File size: 16,689 Bytes
a524d03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ab5772
a524d03
 
 
3ab5772
a524d03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ab5772
a524d03
 
3ab5772
a524d03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ab5772
 
a524d03
 
3ab5772
 
a524d03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ab5772
a524d03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ab5772
a524d03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ab5772
a524d03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ab5772
a524d03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ab5772
a524d03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ab5772
a524d03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ab5772
a524d03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ab5772
a524d03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ef02e9
a524d03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ab5772
a524d03
3ab5772
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a524d03
 
 
3ab5772
2ef02e9
a524d03
3ab5772
a524d03
 
 
 
 
 
 
 
 
3ab5772
 
a524d03
 
3ab5772
a524d03
 
 
 
 
 
 
 
 
 
3ab5772
 
 
 
a524d03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ab5772
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
from einops import rearrange
from einops.layers.torch import Rearrange
from torch import nn
from transformers import PreTrainedModel

import math
import torch

from .configuration_moonshine import MoonshineConfig


class RotaryEmbedding(nn.Module):
    def __init__(self, dim, base=10000):
        super().__init__()

        inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))
        self.register_buffer("inv_freq", inv_freq, persistent=False)

    def forward(self, t):
        freqs = torch.einsum("i , j -> i j", t.type_as(self.inv_freq), self.inv_freq)
        freqs = torch.stack((freqs, freqs), dim=-1)
        return rearrange(freqs, "... d r -> ... (d r)")


def rotate_half(x):
    x = rearrange(x, "... (d r) -> ... d r", r=2)
    x1, x2 = x.unbind(dim=-1)
    x = torch.stack((-x2, x1), dim=-1)
    return rearrange(x, "... d r -> ... (d r)")


def apply_rotary_pos_emb(t, freqs):
    rot_dim, seq_len, orig_dtype = freqs.shape[-1], t.shape[-2], t.dtype

    freqs = freqs[-seq_len:, :]

    # partial rotary embeddings, Wang et al. GPT-J
    t, t_unrotated = t[..., :rot_dim], t[..., rot_dim:]
    t = t * freqs.cos() + rotate_half(t) * freqs.sin()
    out = torch.cat((t, t_unrotated), dim=-1)

    return out.type(orig_dtype)


class MultiHeadAttention(nn.Module):
    def __init__(self, dim, inner_dim, n_head):
        super().__init__()
        self.n_head = n_head
        self.to_q = nn.Linear(dim, inner_dim, bias=False)
        self.to_k = nn.Linear(dim, inner_dim, bias=False)
        self.to_v = nn.Linear(dim, inner_dim, bias=False)
        self.to_out = nn.Linear(inner_dim, dim, bias=False)
        self.softmax = nn.Softmax(dim=-1)

    # Scaled dot product attention
    def sdp_attention(self, q, k_t, v, mask=None):
        d_tensor = v.shape[3]

        op = (q @ k_t) / math.sqrt(d_tensor)
        if mask is not None:
            op = op.masked_fill(mask, -torch.finfo(op.dtype).max)
        score = self.softmax(op)
        out = score @ v

        # concat and pass to linear layer
        out = rearrange(out, "b h n d -> b n (h d)")
        return self.to_out(out)

    def forward(self, q, k, v, rot_pos_emb=None, mask=None):
        # dot product with weight matrices
        q, k, v = self.to_q(q), self.to_k(k), self.to_v(v)

        q = rearrange(q, "b n (h d) -> b h n d", h=self.n_head)
        k = rearrange(k, "b n (h d) -> b h n d", h=self.n_head)
        v = rearrange(v, "b n (h d) -> b h n d", h=self.n_head)

        # apply RoPE
        if rot_pos_emb is not None:
            q = apply_rotary_pos_emb(q, rot_pos_emb)
            k = apply_rotary_pos_emb(k, rot_pos_emb)

        k_t = k.transpose(2, 3)

        return self.sdp_attention(q, k_t, v, mask), k_t, v


class MultiHeadCausalSelfAttentionWithKVCache(MultiHeadAttention):
    def __init__(self, dim, inner_dim, n_head):
        super().__init__(dim, inner_dim, n_head)

    def forward(self, q, k, v, k_cache, v_cache, rot_pos_emb, mask):
        # dot product with weight matrices
        q, k, v = self.to_q(q), self.to_k(k), self.to_v(v)

        q = rearrange(q, "b n (h d) -> b h n d", h=self.n_head)
        k = rearrange(k, "b n (h d) -> b h n d", h=self.n_head)
        v = rearrange(v, "b n (h d) -> b h n d", h=self.n_head)

        # apply RoPE
        q = apply_rotary_pos_emb(q, rot_pos_emb)
        k = apply_rotary_pos_emb(k, rot_pos_emb)

        k_t = k.transpose(2, 3)

        # Append new rows to K and V caches.
        k_t = torch.concat((k_cache, k_t), dim=3)
        v = torch.concat((v_cache, v), dim=2)

        return super().sdp_attention(q, k_t, v, mask=mask), k_t, v


class MultiHeadCrossAttentionWithKVCache(MultiHeadAttention):
    def __init__(self, dim, inner_dim, n_head):
        super().__init__(dim, inner_dim, n_head)

    def forward(self, q, k_cache, v_cache, mask):
        q = self.to_q(q)
        q = rearrange(q, "b n (h d) -> b h n d", h=self.n_head)

        return super().sdp_attention(q, k_cache, v_cache, mask=mask)


class FFLinearGelu(nn.Module):
    def __init__(self, dim, ff_mult=4):
        super().__init__()

        self.ff = nn.Sequential(
            nn.Linear(dim, dim * ff_mult, bias=True),
            nn.GELU(),
            nn.Linear(dim * ff_mult, dim, bias=True),
        )

    def forward(self, x):
        return self.ff(x)


class FFSwiGLU(nn.Module):
    def __init__(self, dim, ff_mult=4):
        super().__init__()

        self.ff_proj = nn.Linear(dim, dim * ff_mult, bias=True)
        self.ff_noact = nn.Linear(dim, dim * ff_mult, bias=True)
        self.ff_act = nn.SiLU()
        self.ff_out = nn.Linear(dim * ff_mult, dim, bias=True)

    def forward(self, x):
        gate = self.ff_act(self.ff_proj(x))
        x_noact = self.ff_noact(x)
        x = x_noact * gate
        return self.ff_out(x)


class EncoderLayer(nn.Module):
    def __init__(self, dim, inner_dim, n_head, ff_swiglu, ff_mult=4):
        super().__init__()

        self.norm1 = nn.LayerNorm(dim, bias=False)

        self.attention = MultiHeadAttention(dim, inner_dim=inner_dim, n_head=n_head)

        self.norm2 = nn.LayerNorm(dim, bias=False)

        self.ff = FFSwiGLU(dim, ff_mult) if ff_swiglu else FFLinearGelu(dim, ff_mult)

    def forward(self, x, rot_pos_emb, mask):
        _x = x
        x = self.norm1(x)
        x, _, _ = self.attention(q=x, k=x, v=x, rot_pos_emb=rot_pos_emb, mask=mask)
        x = x + _x

        _x = x
        x = self.norm2(x)
        x = self.ff(x)

        x = x + _x
        return x


class Encoder(nn.Module):
    def __init__(self, dim, inner_dim, n_head, n_layers, ff_swiglu):
        super().__init__()
        rot_embed_dim = max(inner_dim / n_head / 2, 32)
        self.rot_pos_emb = RotaryEmbedding(rot_embed_dim)

        self.layers = nn.ModuleList(
            [EncoderLayer(dim, inner_dim, n_head, ff_swiglu) for _ in range(n_layers)]
        )
        self.post_norm = nn.LayerNorm(dim, bias=False)

    def forward(self, x, mask):
        pos = torch.arange(x.shape[-2], device=x.device)
        rot_pos_emb = self.rot_pos_emb(pos)

        for idx, layer in enumerate(self.layers):
            x = layer(x, rot_pos_emb=rot_pos_emb, mask=mask)
        return self.post_norm(x)


class DecoderLayer(nn.Module):
    def __init__(self, dim, inner_dim, n_head, ff_swiglu, ff_mult=4):
        super().__init__()

        self.norm1 = nn.LayerNorm(dim, bias=False)

        self.self_attention = MultiHeadCausalSelfAttentionWithKVCache(
            dim, inner_dim=inner_dim, n_head=n_head
        )

        self.norm2 = nn.LayerNorm(dim, bias=False)
        self.cross_attention = MultiHeadCrossAttentionWithKVCache(
            dim, inner_dim=inner_dim, n_head=n_head
        )

        self.norm3 = nn.LayerNorm(dim, bias=False)
        self.ff = FFSwiGLU(dim, ff_mult) if ff_swiglu else FFLinearGelu(dim, ff_mult)

    def forward(self, x, k_cache, v_cache, x_attn_k_cache, x_attn_v_cache, rot_pos_emb, input_mask):
        dim = x.size()[1]
        causal_mask = torch.ones((dim, dim), dtype=torch.bool).triu(1).to(x.device)
        _x = x
        x = self.norm1(x)
        x, new_k_cache, new_v_cache = self.self_attention(
            q=x,
            k=x,
            v=x,
            k_cache=k_cache,
            v_cache=v_cache,
            rot_pos_emb=rot_pos_emb,
            mask=causal_mask,
        )
        x = x + _x

        _x = x
        x = self.norm2(x)
        x = self.cross_attention(q=x, k_cache=x_attn_k_cache, v_cache=x_attn_v_cache, mask=input_mask)
        x = x + _x

        _x = x
        x = self.norm3(x)
        x = self.ff(x)
        x = x + _x

        return x, new_k_cache, new_v_cache


class Decoder(nn.Module):
    def __init__(self, dim, inner_dim, n_head, n_layers, dec_voc_size, ff_swiglu):
        super().__init__()

        self.n_head = n_head
        self.d_head = inner_dim // n_head

        rot_embed_dim = max(inner_dim / n_head / 2, 32)
        self.rot_pos_emb = RotaryEmbedding(rot_embed_dim)

        self.layers = nn.ModuleList(
            [DecoderLayer(dim, inner_dim, n_head, ff_swiglu) for _ in range(n_layers)]
        )
        self.final_norm = nn.LayerNorm(dim, bias=False)
        self.token_embedding = nn.Embedding(dec_voc_size, dim)

    def forward(self, x, input_mask, *args):
        pos = torch.arange(x.shape[1], device=x.device)
        rot_pos_emb = self.rot_pos_emb(pos)
        x = self.token_embedding(x)

        k_cache_new = []
        v_cache_new = []

        n_layer = len(self.layers)
        k_cache, v_cache, x_attn_k_cache, x_attn_v_cache = [
            args[i : i + n_layer] for i in range(0, 4 * n_layer, n_layer)
        ]
        for idx, layer in enumerate(self.layers):
            x, new_k_line, new_v_line = layer(
                x[:, -1:],
                k_cache=k_cache[idx],
                v_cache=v_cache[idx],
                x_attn_k_cache=x_attn_k_cache[idx],
                x_attn_v_cache=x_attn_v_cache[idx],
                rot_pos_emb=rot_pos_emb,
                input_mask=input_mask,
            )
            k_cache_new.append(new_k_line)
            v_cache_new.append(new_v_line)

        x = self.final_norm(x)

        return x @ self.token_embedding.weight.t(), *k_cache_new, *v_cache_new


class InitialDecoderLayer(nn.Module):
    def __init__(self, dim, inner_dim, n_head, ff_swiglu, ff_mult=4):
        super().__init__()

        self.norm1 = nn.LayerNorm(dim, bias=False)

        self.self_attention = MultiHeadAttention(
            dim, inner_dim=inner_dim, n_head=n_head
        )

        self.norm2 = nn.LayerNorm(dim, bias=False)
        self.cross_attention = MultiHeadAttention(
            dim, inner_dim=inner_dim, n_head=n_head
        )

        self.norm3 = nn.LayerNorm(dim, bias=False)
        self.ff = FFSwiGLU(dim, ff_mult) if ff_swiglu else FFLinearGelu(dim, ff_mult)

    def forward(self, x, context, rot_pos_emb, input_mask):
        dim = x.size()[1]
        causal_mask = torch.ones((dim, dim), dtype=torch.bool).triu(1).to(x.device)
        _x = x
        x = self.norm1(x)
        x, new_k_cache, new_v_cache = self.self_attention(
            q=x,
            k=x,
            v=x,
            rot_pos_emb=rot_pos_emb,
            mask=causal_mask,
        )
        x = x + _x

        _x = x
        x = self.norm2(x)
        x, x_attn_k_cache, x_attn_v_cache = self.cross_attention(
            q=x, k=context, v=context, mask=input_mask,
        )
        x = x + _x

        _x = x
        x = self.norm3(x)
        x = self.ff(x)
        x = x + _x

        return x, new_k_cache, new_v_cache, x_attn_k_cache, x_attn_v_cache


class DecoderInitial(Decoder):
    def __init__(self, dim, inner_dim, n_head, n_layers, dec_voc_size, ff_swiglu):
        super().__init__(dim, inner_dim, n_head, n_layers, dec_voc_size, ff_swiglu)
        self.layers = nn.ModuleList(
            [
                InitialDecoderLayer(dim, inner_dim, n_head, ff_swiglu)
                for _ in range(n_layers)
            ]
        )

    def forward(self, x, enc_src, input_mask):
        pos = torch.arange(x.shape[1], device=x.device)
        rot_pos_emb = self.rot_pos_emb(pos)
        x = self.token_embedding(x)

        # Shape [n_layers, batch_size, n_head, seq_len, inner_dim]. Cache K transposed.
        n_layer = len(self.layers)
        k_cache = []
        v_cache = []
        x_attn_k_cache = []
        x_attn_v_cache = []

        for idx, layer in enumerate(self.layers):
            x, new_k_line, new_v_line, new_x_attn_k_line, new_x_attn_v_line = layer(
                x,
                enc_src,
                rot_pos_emb,
                input_mask,
            )

            k_cache.append(new_k_line)
            v_cache.append(new_v_line)
            x_attn_k_cache.append(new_x_attn_k_line)
            x_attn_v_cache.append(new_x_attn_v_line)

        x = self.final_norm(x)

        return (
            x @ self.token_embedding.weight.t(),
            *k_cache,
            *v_cache,
            *x_attn_k_cache,
            *x_attn_v_cache,
        )


class AudioPreprocessor(nn.Module):
    def __init__(self, dim):
        super().__init__()
        self.audio_preprocess = nn.Sequential(
            nn.Conv1d(1, dim, 127, 64, bias=False),
            nn.Tanh(),
            nn.GroupNorm(1, dim),
            nn.Conv1d(dim, 2 * dim, 7, 3),
            nn.GELU(),
            nn.Conv1d(2 * dim, dim, 3, 2),
            nn.GELU(),
            Rearrange("... c s -> ... s c"),
        )

    def forward(self, src):
        assert (
            src.shape[-1] >= 1023
        ), f"src shape[-1] {src.shape[-1]} should be at least 1023"
        src = src.reshape((-1, 1, src.shape[-1]))
        return self.audio_preprocess(src)


class MoonshineModelTorch(nn.Module):
    def __init__(
        self,
        dim,
        inner_dim,
        enc_depth,
        dec_depth,
        n_head=8,
        dec_voc_size=32768,
        enc_ff_swiglu=False,
        dec_ff_swiglu=False,
    ):
        super().__init__()
        self.preprocessor = AudioPreprocessor(dim)
        self.encoder = Encoder(
            dim, inner_dim, n_head, enc_depth, ff_swiglu=enc_ff_swiglu
        )
        self.decoder_initial = DecoderInitial(
            dim, inner_dim, n_head, dec_depth, dec_voc_size, ff_swiglu=dec_ff_swiglu
        )
        self.decoder = Decoder(
            dim, inner_dim, n_head, dec_depth, dec_voc_size, ff_swiglu=dec_ff_swiglu
        )
        self.dec_depth = dec_depth
        self.n_head = n_head
        self.d_head = inner_dim // n_head

    def generate(self, src, mask):
        preprocessed = self.preprocessor(src)
        batch_size = preprocessed.shape[0]

        # Get max sequence length based on number of unmasked inputs for each sample in batch.
        token_limit_factor = 6.5 / 16000.0 # Maximum of 6.5 tokens per second.
        if mask is not None:
            seq_lens = torch.sum(mask, dim=-1, keepdim=True) * token_limit_factor
        else:
            token_limit = torch.tensor([src.shape[-1] * token_limit_factor])
            seq_lens = torch.stack([token_limit for _ in range(batch_size)])
        seq_lens = seq_lens.to(torch.int32).to(src.device).squeeze()

        # Preprocess mask so that it matches preprocessed audio.
        if mask is not None:
            mask = mask[..., :-127:64][..., :-7:3][..., :-3:2].to(torch.bool)
            mask = ~mask.reshape((batch_size, 1, 1, -1))
            mask = torch.nn.functional.pad(mask, (0, preprocessed.shape[-2] - mask.shape[-1]))

        enc = self.encoder(preprocessed, mask)

        sot_token = 1
        eot_token = 2

        sot_array = [[sot_token] for _ in range(batch_size)]
        seq = torch.as_tensor(sot_array).to(src.device)

        vals = self.decoder_initial(x=seq, enc_src=enc, input_mask=mask)
        logits = vals[0]
        k_cache, v_cache, x_attn_k_cache, x_attn_v_cache = [
            vals[i : i + self.dec_depth]
            for i in range(1, 1 + self.dec_depth * 4, self.dec_depth)
        ]

        sample = logits[:, -1].argmax(dim=-1, keepdim=True)
        seq = torch.cat((seq, sample), dim=-1)

        eot_mask = torch.zeros((batch_size), dtype=torch.bool).to(src.device)
        while not torch.all(eot_mask):
            vals = self.decoder(
                seq,
                mask,
                *k_cache,
                *v_cache,
                *x_attn_k_cache,
                *x_attn_v_cache,
            )
            logits = vals[0]
            k_cache = vals[1 : self.dec_depth + 1]
            v_cache = vals[self.dec_depth + 1 :]
            logits = logits[:, -1]  # get last token
            sample = logits.argmax(dim=-1, keepdim=True)
            # For each sample in batch detect EOT or token limit reached.
            eot_mask = eot_mask | (sample.squeeze() == eot_token)
            eot_mask = eot_mask | (seq.shape[-1] >= seq_lens)
            sample = sample.masked_fill(eot_mask.reshape((-1, 1)), eot_token)
            seq = torch.cat((seq, sample), dim=-1)

        return seq


class MoonshineModel(PreTrainedModel):
    config_class = MoonshineConfig

    def __init__(self, config):
        super().__init__(config)
        self.model = MoonshineModelTorch(
            dim = config.dim,
            inner_dim = config.inner_dim,
            enc_depth = config.enc_depth,
            dec_depth = config.dec_depth,
            n_head = config.n_head,
            dec_voc_size = config.dec_voc_size,
            enc_ff_swiglu = config.enc_ff_swiglu,
            dec_ff_swiglu = config.dec_ff_swiglu,
        )

    def forward(self, tensor, input_mask=None):
        return self.model.generate(tensor, input_mask)