ppo-LunarLander-v2 / config.json
VATSAL1729's picture
Upload PPO LunarLander-v2 trained agent
ebdd9c8 verified
raw
history blame
13.8 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7adcee428af0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7adcee428b80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7adcee428c10>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7adcee428ca0>", "_build": "<function ActorCriticPolicy._build at 0x7adcee428d30>", "forward": "<function ActorCriticPolicy.forward at 0x7adcee428dc0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7adcee428e50>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7adcee428ee0>", "_predict": "<function ActorCriticPolicy._predict at 0x7adcee428f70>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7adcee429000>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7adcee429090>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7adcee429120>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7adcee41cd80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1708945550381818657, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAFIGsr5jwWc/DLXHvtQslb7ew5m+iIAIPQAAAAAAAAAAmpXsO76drT8Vt2E99dCgvn+QB7yAaa48AAAAAAAAAACAc8e9H/l7Ptd8vz2/A2u+gyp0PAVAQD0AAAAAAAAAAEafHj44Weo9pe10vknyWr7co82873RCvQAAAAAAAAAAZkhXvSnAZbopypU4RD7dMdW/Urtzzqu3AACAPwAAgD8NSAE+ViiCPzCPfz3PpMS+F0jAPYqDlD0AAAAAAAAAABqil70F5Ne7+CDhPGoa6r2WXi49swPFPgAAgD8AAIA/mvU6PfZ8BbprZWG94K+YPPrAUjulpYS9AACAPwAAgD/miNo94MOkP9auGz9s48++lIqzPdHZiT4AAAAAAAAAAM0swjtskl4+ubKWPZnNbr4L9K08rr2lPAAAAAAAAAAAGiwAPa6vsrpKBOa6dgGnPNcf7Lru/Y89AACAPwAAgD8aXqe9yq9mPpdnND4qGmu+Np6BPZZPCT0AAAAAAAAAAC3aLz4jjy0/NlDIvaQPqL4/rHw9GBwCvQAAAAAAAAAATSNmPocc5j4SRkq+gdGTvlAdR71rCWq9AAAAAAAAAABmqSC9WpGpP8BD7b4pD/O+ihh2O5T1DL0AAAAAAAAAAAuVmb6GClY/FWHnPRnrhb4LPd+9u3gTPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHE3eKGcnVqMAWyUTTcBjAF0lEdAjfeKx9oexXV9lChoBkdAcb70dilSCWgHTU0BaAhHQI34VCu2ZzB1fZQoaAZHQHIMX6/IsAhoB01iAWgIR0CN+Ra24NI9dX2UKGgGR0BvnTgdfb9IaAdNTQFoCEdAjfuUWEbo83V9lChoBkdAcRbABDG96GgHTV0BaAhHQI4AJWilBQh1fZQoaAZHQHBf08ifQKNoB00fAWgIR0COASTL4etCdX2UKGgGR0Bygs+JP69CaAdNeAFoCEdAjgMExh2GI3V9lChoBkdAcFrKqn3tbGgHTS0BaAhHQI4Djmp2ll91fZQoaAZHQHEyi4FzMidoB01fAWgIR0COBQS26TW5dX2UKGgGR0BthZjBl+VkaAdNbAFoCEdAjgUtlI3BHnV9lChoBkdAcTGGNaQmu2gHTRwBaAhHQI4GVndweeZ1fZQoaAZHQHGIYDs+mnBoB00gAWgIR0COBoujh1kldX2UKGgGR0BtI5dWyTpxaAdNMgFoCEdAjgfQGGEf1nV9lChoBkdAchtn4fwI+mgHTWMBaAhHQI4Is8s+V1R1fZQoaAZHQHCnU8NhE0BoB00VAWgIR0COC2a8Yht+dX2UKGgGR0Bu1a8cuJ1raAdNiQFoCEdAjg3RcE/0NHV9lChoBkdAb2NdfLLZBmgHTTwBaAhHQI4O7+rELpl1fZQoaAZHQG1cOBMBZIRoB01GAWgIR0COEHc/t6X0dX2UKGgGR0Bx0RdB0IToaAdNOQFoCEdAjhIngYP5HnV9lChoBkdAcRsDn/1g6WgHTaUBaAhHQI4TFSl3yI51fZQoaAZHQHEMQGKQ7tBoB00MAWgIR0COFCN9YwIudX2UKGgGR0Bw93aFmFrVaAdNCwFoCEdAjhX+TmnwX3V9lChoBkdAbuqAaNuLrGgHTT0BaAhHQI4WlBppN9J1fZQoaAZHQHL4dvwVj7RoB0v0aAhHQI4XDlLeyiV1fZQoaAZHQG8OnWattANoB00kAWgIR0COGMPI4lyBdX2UKGgGR0Bwd8f/3nIRaAdNHAFoCEdAjhsJk5IYnHV9lChoBkdAcGpCcPOIImgHTUcBaAhHQI4chTyauwJ1fZQoaAZHQHHQS+cpb2VoB01rAWgIR0COHeRRuTA4dX2UKGgGR0BwpbNhVlwtaAdNNgFoCEdAjh3hqj8DS3V9lChoBkdAccaaLn9vTGgHTYsBaAhHQI4eLaPCEYh1fZQoaAZHQG3qP60pmVZoB00bAWgIR0COIIxcmjTKdX2UKGgGR0BxQla2WpqAaAdNEgFoCEdAjiJZprULD3V9lChoBkdAcrvoDgZTAGgHTV4BaAhHQI4ihyn1nNB1fZQoaAZHQHEgw2uPmxNoB000AWgIR0COIx1TR6WxdX2UKGgGR0BxwjOmixmkaAdNSgFoCEdAjidNTUAks3V9lChoBkdAciFmlqJuVGgHTUMBaAhHQI4nqqdYnv51fZQoaAZHQG8T9n003wVoB00+AWgIR0COKHnJ1aGIdX2UKGgGR0BwxiYNRWLhaAdNOAFoCEdAjin6BZpztHV9lChoBkdAcNf/FBIFvGgHTQcBaAhHQI4r16eGwid1fZQoaAZHQG+HNIbwSapoB01QAWgIR0COLNlRxcVydX2UKGgGR0BwDLwqiGnGaAdNZQFoCEdAji2w1BMSK3V9lChoBkdAbyVsMy8BdWgHTRkBaAhHQI4xL3h4t6J1fZQoaAZHQHFMGfChvitoB01oAWgIR0COMU7iADq4dX2UKGgGR0BKFytvGZNPaAdLyGgIR0COMUv2Xb/PdX2UKGgGR0Byt3umaYu1aAdNOAFoCEdAjjHBhYvFnHV9lChoBkdAcrbZLqUu+WgHTS0BaAhHQI4yZ7ojfN11fZQoaAZHQHFh3XumaYxoB000AWgIR0COMvb/Ot4idX2UKGgGR0Bxgj40uUUxaAdNAgFoCEdAjjUEYGdI5HV9lChoBkdAcv3azu4PPWgHTQkBaAhHQI5eXivPkaN1fZQoaAZHQHB8mzSkTHtoB01eAWgIR0COXqYMvyskdX2UKGgGR0BxLiDEm6XjaAdNDQFoCEdAjl/KISDh+HV9lChoBkdAcRO+LFXJYGgHTTMBaAhHQI5kEghbGFV1fZQoaAZHQG1Oz67/XGxoB01ZAWgIR0COZFfeDWbxdX2UKGgGR0Bx60wevIOpaAdNIwFoCEdAjmT8+iaiK3V9lChoBkdAcHhPIXCTEGgHTS4BaAhHQI5m19KEnLJ1fZQoaAZHQHEeQN5MURFoB01BAWgIR0COaTDx9XtCdX2UKGgGR0BxhkZGax5caAdNHQFoCEdAjmlNVR1ox3V9lChoBkdAcZ4VjZtelmgHTTcBaAhHQI5q/3YcvM91fZQoaAZHQHAnmyTpxFRoB00+AWgIR0COa5CmdiDvdX2UKGgGR0ButGEM9bHIaAdNNAFoCEdAjmxHeBQN1HV9lChoBkdAcQ+7sfJV82gHTUYBaAhHQI5tASteUpx1fZQoaAZHQHImgjyFwkxoB01YAWgIR0CObZiGWUr1dX2UKGgGR0ByQ1uEVWS2aAdNYAFoCEdAjnCwgkka/HV9lChoBkdAbDrKs+3YtmgHTSkBaAhHQI5y9KCg9Nh1fZQoaAZHQHDzvalDWsloB01AAWgIR0COdDbUPQOXdX2UKGgGR0BuOYi1RceKaAdNFQFoCEdAjncVv/BFeHV9lChoBkdAcCj6q814xGgHTSABaAhHQI54w/oq0+l1fZQoaAZHQHEInMY/FBJoB00MAWgIR0COeSU+LWI5dX2UKGgGR0Bx6dECvHLiaAdNAQFoCEdAjnq/qoqCpXV9lChoBkdAb46b/ffoBGgHTWIBaAhHQI59dETg2qF1fZQoaAZHQHGjKnaWX1JoB02nAWgIR0COfe0mdAgQdX2UKGgGR0BwUEq0+kgwaAdNHAFoCEdAjn8YqoZQ53V9lChoBkdAciwgdOqNqGgHTUsBaAhHQI6AsAHVwxZ1fZQoaAZHQG/12OAAhjhoB00UAWgIR0COgVrtVrAQdX2UKGgGR0BtxVtO2y9maAdNJgFoCEdAjoHyzgMtsnV9lChoBkdAcHYeb/ffoGgHTT0BaAhHQI6CERWcSXd1fZQoaAZHQHG+1RLsa89oB00hAWgIR0COhdpV0cOtdX2UKGgGR0Bv0CN4qwyJaAdNjgFoCEdAjojNWEK3NXV9lChoBkdAcGXQNCqp+GgHTRkBaAhHQI6JYScslLR1fZQoaAZHQHEFFNpM6BBoB001AWgIR0COigygwoLHdX2UKGgGR0BxykByS3b3aAdNAwFoCEdAjoqeglF+eHV9lChoBkdATrZ2OhkAgmgHTegDaAhHQI6LEbedkJ91fZQoaAZHQHBfKNIbwSdoB00QAWgIR0COjk5RTCLudX2UKGgGR0BzS3YlIEr5aAdNRQFoCEdAjpEfJ3gUDnV9lChoBkdAcpVoGIKtxWgHTVwBaAhHQI6S4EW69TR1fZQoaAZHQHCdskyDZlFoB00eAWgIR0COkx9cbBGhdX2UKGgGR0BwVmiItUXIaAdNFQFoCEdAjpOiCBf8dnV9lChoBkdAcIP580DU3GgHTUIBaAhHQI6Vm1SflIV1fZQoaAZHQHK+uiaiKzloB007AWgIR0COmF63RXwLdX2UKGgGR0BuQifHxSYPaAdNNAFoCEdAjpiSEDhcaHV9lChoBkdAcNstf5ULlWgHTSsBaAhHQI6Yp7b+Lm91fZQoaAZHQG5gHF5v9+BoB00wAWgIR0COmOJIDoyLdX2UKGgGR0BxW1OEdvKmaAdL92gIR0COnn9Hc1wYdX2UKGgGR0BxKkojOcDsaAdNQwFoCEdAjp8jv/io9HV9lChoBkdAbYZB42S+xmgHTRsBaAhHQI6flHrhR651fZQoaAZHQG1i2BreqJdoB01FAWgIR0COob+wTufFdX2UKGgGR0BS1GLYPGyYaAdLzGgIR0COoqWvbGm2dX2UKGgGR0ByImx3V09yaAdNagFoCEdAjqU1schkiHV9lChoBkdAbt4IomXw9mgHTSsBaAhHQI6lk21lXil1fZQoaAZHQHDxUMspXp5oB01qAWgIR0COpbaDf3vhdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}