Teja-Gollapudi commited on
Commit
63a01be
·
1 Parent(s): c107535

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +69 -0
README.md ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc
3
+ datasets:
4
+ - VMware/open-instruct-v1.1-oasst-dolly-hhrlhf
5
+ language:
6
+ - en
7
+ library_name: transformers
8
+ pipeline_tag: conversational
9
+ ---
10
+
11
+ # VMware/open-llama-0.7T-7B-open-instruct-v1.1
12
+
13
+ ## License
14
+ - <b>Commercially Viable </b>
15
+ - Instruction dataset, [VMware/open-instruct-v1.1-oasst-dolly-hhrlhf](https://huggingface.co/datasets/VMware/open-instruct-v1.1-oasst-dolly-hhrlhf) is under cc-by-sa-3.0
16
+ - Language Model ([openlm-research/open_llama_7b_700bt_preview](https://huggingface.co/openlm-research/open_llama_7b_700bt_preview)) is under apache-2.0
17
+
18
+
19
+ ## Nomenclature
20
+
21
+ - Model : Open-llama
22
+ - Model trained on : 700B or 0.7 T tokens
23
+ - Model Size: 7B parameters
24
+ - Dataset: Open-instruct-v1.1 (oasst,dolly, hhrlhf)
25
+
26
+
27
+ ## Use in Transformers
28
+
29
+
30
+ ```
31
+ import os
32
+ import torch
33
+ from transformers import AutoModelForCausalLM, AutoTokenizer
34
+
35
+ model_name = 'VMware/open-llama-0.7T-7B-open-instruct-v1.1'
36
+
37
+
38
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
39
+
40
+ model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype= torch.float16, device_map = 'sequential')
41
+
42
+ prompt_template = "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Response:"
43
+
44
+ prompt= 'Explain in simple terms how the attention mechanism of a transformer model works'
45
+
46
+
47
+ inputt = prompt_template.format(instruction= prompt)
48
+ input_ids = tokenizer(inputt, return_tensors="pt").input_ids.to("cuda")
49
+
50
+ output1 = model.generate(input_ids, max_length=512)
51
+ input_length = input_ids.shape[1]
52
+ output1 = output1[:, input_length:]
53
+ output= tokenizer.decode(output1[0])
54
+
55
+ print(output)
56
+
57
+ '''
58
+ The attention mechanism of a transformer model is designed to help the model understand the relationship between different parts of a sentence.
59
+ The model uses a weighted attention score to determine how much each input token contributes to the output.
60
+ The attention score is calculated by looking at the similarity between each input token and the output token,and assigning a weight to each input token based on this similarity.
61
+ This way, the model can better understand the relationship between different parts of a sentence and generate more accurate predictions.
62
+
63
+ '''
64
+ ```
65
+
66
+
67
+ ## Evaluation
68
+
69
+ <B>TODO</B>