Upload Transformers.ipynb
Browse filesthe main model of the transformers
- Transformers.ipynb +1634 -0
Transformers.ipynb
ADDED
@@ -0,0 +1,1634 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"id": "c3af7c60-ba26-4f75-bbe9-664347299dca",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [
|
9 |
+
{
|
10 |
+
"name": "stdout",
|
11 |
+
"output_type": "stream",
|
12 |
+
"text": [
|
13 |
+
"Defaulting to user installation because normal site-packages is not writeable\n",
|
14 |
+
"Collecting transformers\n",
|
15 |
+
" Downloading transformers-4.39.1-py3-none-any.whl.metadata (134 kB)\n",
|
16 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m134.8/134.8 kB\u001b[0m \u001b[31m3.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m\n",
|
17 |
+
"\u001b[?25hCollecting datasets\n",
|
18 |
+
" Downloading datasets-2.18.0-py3-none-any.whl.metadata (20 kB)\n",
|
19 |
+
"Collecting accelerate\n",
|
20 |
+
" Downloading accelerate-0.28.0-py3-none-any.whl.metadata (18 kB)\n",
|
21 |
+
"Requirement already satisfied: filelock in /usr/lib/python3/dist-packages (from transformers) (3.6.0)\n",
|
22 |
+
"Collecting huggingface-hub<1.0,>=0.19.3 (from transformers)\n",
|
23 |
+
" Downloading huggingface_hub-0.22.1-py3-none-any.whl.metadata (12 kB)\n",
|
24 |
+
"Requirement already satisfied: numpy>=1.17 in ./.local/lib/python3.10/site-packages (from transformers) (1.25.2)\n",
|
25 |
+
"Requirement already satisfied: packaging>=20.0 in /usr/lib/python3/dist-packages (from transformers) (21.3)\n",
|
26 |
+
"Requirement already satisfied: pyyaml>=5.1 in /usr/lib/python3/dist-packages (from transformers) (5.4.1)\n",
|
27 |
+
"Collecting regex!=2019.12.17 (from transformers)\n",
|
28 |
+
" Downloading regex-2023.12.25-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (40 kB)\n",
|
29 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m40.9/40.9 kB\u001b[0m \u001b[31m6.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
30 |
+
"\u001b[?25hRequirement already satisfied: requests in ./.local/lib/python3.10/site-packages (from transformers) (2.31.0)\n",
|
31 |
+
"Collecting tokenizers<0.19,>=0.14 (from transformers)\n",
|
32 |
+
" Downloading tokenizers-0.15.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (6.7 kB)\n",
|
33 |
+
"Collecting safetensors>=0.4.1 (from transformers)\n",
|
34 |
+
" Downloading safetensors-0.4.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (3.8 kB)\n",
|
35 |
+
"Requirement already satisfied: tqdm>=4.27 in ./.local/lib/python3.10/site-packages (from transformers) (4.66.1)\n",
|
36 |
+
"Collecting pyarrow>=12.0.0 (from datasets)\n",
|
37 |
+
" Downloading pyarrow-15.0.2-cp310-cp310-manylinux_2_28_x86_64.whl.metadata (3.0 kB)\n",
|
38 |
+
"Collecting pyarrow-hotfix (from datasets)\n",
|
39 |
+
" Downloading pyarrow_hotfix-0.6-py3-none-any.whl.metadata (3.6 kB)\n",
|
40 |
+
"Collecting dill<0.3.9,>=0.3.0 (from datasets)\n",
|
41 |
+
" Downloading dill-0.3.8-py3-none-any.whl.metadata (10 kB)\n",
|
42 |
+
"Requirement already satisfied: pandas in /usr/lib/python3/dist-packages (from datasets) (1.3.5)\n",
|
43 |
+
"Collecting xxhash (from datasets)\n",
|
44 |
+
" Downloading xxhash-3.4.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (12 kB)\n",
|
45 |
+
"Collecting multiprocess (from datasets)\n",
|
46 |
+
" Downloading multiprocess-0.70.16-py310-none-any.whl.metadata (7.2 kB)\n",
|
47 |
+
"Collecting fsspec<=2024.2.0,>=2023.1.0 (from fsspec[http]<=2024.2.0,>=2023.1.0->datasets)\n",
|
48 |
+
" Downloading fsspec-2024.2.0-py3-none-any.whl.metadata (6.8 kB)\n",
|
49 |
+
"Collecting aiohttp (from datasets)\n",
|
50 |
+
" Downloading aiohttp-3.9.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (7.4 kB)\n",
|
51 |
+
"Requirement already satisfied: psutil in /usr/lib/python3/dist-packages (from accelerate) (5.9.0)\n",
|
52 |
+
"Requirement already satisfied: torch>=1.10.0 in /usr/lib/python3/dist-packages (from accelerate) (2.0.1)\n",
|
53 |
+
"Collecting aiosignal>=1.1.2 (from aiohttp->datasets)\n",
|
54 |
+
" Downloading aiosignal-1.3.1-py3-none-any.whl.metadata (4.0 kB)\n",
|
55 |
+
"Requirement already satisfied: attrs>=17.3.0 in ./.local/lib/python3.10/site-packages (from aiohttp->datasets) (23.1.0)\n",
|
56 |
+
"Collecting frozenlist>=1.1.1 (from aiohttp->datasets)\n",
|
57 |
+
" Downloading frozenlist-1.4.1-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (12 kB)\n",
|
58 |
+
"Collecting multidict<7.0,>=4.5 (from aiohttp->datasets)\n",
|
59 |
+
" Downloading multidict-6.0.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (4.2 kB)\n",
|
60 |
+
"Collecting yarl<2.0,>=1.0 (from aiohttp->datasets)\n",
|
61 |
+
" Downloading yarl-1.9.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (31 kB)\n",
|
62 |
+
"Collecting async-timeout<5.0,>=4.0 (from aiohttp->datasets)\n",
|
63 |
+
" Downloading async_timeout-4.0.3-py3-none-any.whl.metadata (4.2 kB)\n",
|
64 |
+
"Requirement already satisfied: typing-extensions>=3.7.4.3 in ./.local/lib/python3.10/site-packages (from huggingface-hub<1.0,>=0.19.3->transformers) (4.8.0)\n",
|
65 |
+
"Requirement already satisfied: charset-normalizer<4,>=2 in ./.local/lib/python3.10/site-packages (from requests->transformers) (3.3.2)\n",
|
66 |
+
"Requirement already satisfied: idna<4,>=2.5 in /usr/lib/python3/dist-packages (from requests->transformers) (3.3)\n",
|
67 |
+
"Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/lib/python3/dist-packages (from requests->transformers) (1.26.5)\n",
|
68 |
+
"Requirement already satisfied: certifi>=2017.4.17 in /usr/lib/python3/dist-packages (from requests->transformers) (2020.6.20)\n",
|
69 |
+
"Downloading transformers-4.39.1-py3-none-any.whl (8.8 MB)\n",
|
70 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m8.8/8.8 MB\u001b[0m \u001b[31m208.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m\n",
|
71 |
+
"\u001b[?25hDownloading datasets-2.18.0-py3-none-any.whl (510 kB)\n",
|
72 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m510.5/510.5 kB\u001b[0m \u001b[31m80.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
73 |
+
"\u001b[?25hDownloading accelerate-0.28.0-py3-none-any.whl (290 kB)\n",
|
74 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m290.1/290.1 kB\u001b[0m \u001b[31m59.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
75 |
+
"\u001b[?25hDownloading dill-0.3.8-py3-none-any.whl (116 kB)\n",
|
76 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m116.3/116.3 kB\u001b[0m \u001b[31m24.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
77 |
+
"\u001b[?25hDownloading fsspec-2024.2.0-py3-none-any.whl (170 kB)\n",
|
78 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m170.9/170.9 kB\u001b[0m \u001b[31m33.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
79 |
+
"\u001b[?25hDownloading aiohttp-3.9.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB)\n",
|
80 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.2/1.2 MB\u001b[0m \u001b[31m136.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
81 |
+
"\u001b[?25hDownloading huggingface_hub-0.22.1-py3-none-any.whl (388 kB)\n",
|
82 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m388.6/388.6 kB\u001b[0m \u001b[31m66.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
83 |
+
"\u001b[?25hDownloading pyarrow-15.0.2-cp310-cp310-manylinux_2_28_x86_64.whl (38.3 MB)\n",
|
84 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m38.3/38.3 MB\u001b[0m \u001b[31m123.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n",
|
85 |
+
"\u001b[?25hDownloading regex-2023.12.25-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (773 kB)\n",
|
86 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m774.0/774.0 kB\u001b[0m \u001b[31m97.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
87 |
+
"\u001b[?25hDownloading safetensors-0.4.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB)\n",
|
88 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.3/1.3 MB\u001b[0m \u001b[31m125.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
89 |
+
"\u001b[?25hDownloading tokenizers-0.15.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.6 MB)\n",
|
90 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m3.6/3.6 MB\u001b[0m \u001b[31m194.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
91 |
+
"\u001b[?25hDownloading multiprocess-0.70.16-py310-none-any.whl (134 kB)\n",
|
92 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m134.8/134.8 kB\u001b[0m \u001b[31m30.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
93 |
+
"\u001b[?25hDownloading pyarrow_hotfix-0.6-py3-none-any.whl (7.9 kB)\n",
|
94 |
+
"Downloading xxhash-3.4.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (194 kB)\n",
|
95 |
+
"\u001b[2K \u001b[90m��━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m194.1/194.1 kB\u001b[0m \u001b[31m50.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
96 |
+
"\u001b[?25hDownloading aiosignal-1.3.1-py3-none-any.whl (7.6 kB)\n",
|
97 |
+
"Downloading async_timeout-4.0.3-py3-none-any.whl (5.7 kB)\n",
|
98 |
+
"Downloading frozenlist-1.4.1-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (239 kB)\n",
|
99 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m239.5/239.5 kB\u001b[0m \u001b[31m45.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
100 |
+
"\u001b[?25hDownloading multidict-6.0.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (124 kB)\n",
|
101 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m124.3/124.3 kB\u001b[0m \u001b[31m29.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
102 |
+
"\u001b[?25hDownloading yarl-1.9.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (301 kB)\n",
|
103 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m301.6/301.6 kB\u001b[0m \u001b[31m61.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
104 |
+
"\u001b[?25h\u001b[33mDEPRECATION: flatbuffers 1.12.1-git20200711.33e2d80-dfsg1-0.6 has a non-standard version number. pip 24.0 will enforce this behaviour change. A possible replacement is to upgrade to a newer version of flatbuffers or contact the author to suggest that they release a version with a conforming version number. Discussion can be found at https://github.com/pypa/pip/issues/12063\u001b[0m\u001b[33m\n",
|
105 |
+
"\u001b[0mInstalling collected packages: xxhash, safetensors, regex, pyarrow-hotfix, pyarrow, multidict, fsspec, frozenlist, dill, async-timeout, yarl, multiprocess, huggingface-hub, aiosignal, tokenizers, aiohttp, accelerate, transformers, datasets\n",
|
106 |
+
"Successfully installed accelerate-0.28.0 aiohttp-3.9.3 aiosignal-1.3.1 async-timeout-4.0.3 datasets-2.18.0 dill-0.3.8 frozenlist-1.4.1 fsspec-2024.2.0 huggingface-hub-0.22.1 multidict-6.0.5 multiprocess-0.70.16 pyarrow-15.0.2 pyarrow-hotfix-0.6 regex-2023.12.25 safetensors-0.4.2 tokenizers-0.15.2 transformers-4.39.1 xxhash-3.4.1 yarl-1.9.4\n",
|
107 |
+
"\n",
|
108 |
+
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m23.3.1\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m24.0\u001b[0m\n",
|
109 |
+
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpython3 -m pip install --upgrade pip\u001b[0m\n"
|
110 |
+
]
|
111 |
+
}
|
112 |
+
],
|
113 |
+
"source": [
|
114 |
+
"! pip install transformers datasets accelerate"
|
115 |
+
]
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"cell_type": "code",
|
119 |
+
"execution_count": 2,
|
120 |
+
"id": "0c24abf0-926e-4c37-9713-58dffe06ed03",
|
121 |
+
"metadata": {},
|
122 |
+
"outputs": [],
|
123 |
+
"source": [
|
124 |
+
"GLUE_TASKS = [\"cola\", \"mnli\", \"mnli-mm\", \"mrpc\", \"qnli\", \"qqp\", \"rte\", \"sst2\", \"stsb\", \"wnli\"]"
|
125 |
+
]
|
126 |
+
},
|
127 |
+
{
|
128 |
+
"cell_type": "code",
|
129 |
+
"execution_count": 3,
|
130 |
+
"id": "390d5322-3f72-49e5-b001-f66d943f0c2c",
|
131 |
+
"metadata": {},
|
132 |
+
"outputs": [],
|
133 |
+
"source": [
|
134 |
+
"task = \"cola\"\n",
|
135 |
+
"model_checkpoint = \"distilbert-base-uncased\"\n",
|
136 |
+
"batch_size = 16"
|
137 |
+
]
|
138 |
+
},
|
139 |
+
{
|
140 |
+
"cell_type": "code",
|
141 |
+
"execution_count": 4,
|
142 |
+
"id": "bece75f9-a5a2-45a6-aef0-33a2fafd6262",
|
143 |
+
"metadata": {},
|
144 |
+
"outputs": [],
|
145 |
+
"source": [
|
146 |
+
"from datasets import load_dataset, load_metric"
|
147 |
+
]
|
148 |
+
},
|
149 |
+
{
|
150 |
+
"cell_type": "code",
|
151 |
+
"execution_count": 5,
|
152 |
+
"id": "a3bfef60-bd97-434e-9b83-560687ad4c08",
|
153 |
+
"metadata": {},
|
154 |
+
"outputs": [
|
155 |
+
{
|
156 |
+
"data": {
|
157 |
+
"application/vnd.jupyter.widget-view+json": {
|
158 |
+
"model_id": "1316f9ea215b4c99b67f5278ac5061fd",
|
159 |
+
"version_major": 2,
|
160 |
+
"version_minor": 0
|
161 |
+
},
|
162 |
+
"text/plain": [
|
163 |
+
"Downloading readme: 0%| | 0.00/35.3k [00:00<?, ?B/s]"
|
164 |
+
]
|
165 |
+
},
|
166 |
+
"metadata": {},
|
167 |
+
"output_type": "display_data"
|
168 |
+
},
|
169 |
+
{
|
170 |
+
"name": "stderr",
|
171 |
+
"output_type": "stream",
|
172 |
+
"text": [
|
173 |
+
"/usr/lib/python3/dist-packages/scipy/__init__.py:146: UserWarning: A NumPy version >=1.17.3 and <1.25.0 is required for this version of SciPy (detected version 1.25.2\n",
|
174 |
+
" warnings.warn(f\"A NumPy version >={np_minversion} and <{np_maxversion}\"\n",
|
175 |
+
"Downloading data: 100%|██████████| 251k/251k [00:00<00:00, 1.00MB/s]\n",
|
176 |
+
"Downloading data: 100%|██████████| 37.6k/37.6k [00:00<00:00, 251kB/s]\n",
|
177 |
+
"Downloading data: 100%|██████████| 37.7k/37.7k [00:00<00:00, 242kB/s]\n"
|
178 |
+
]
|
179 |
+
},
|
180 |
+
{
|
181 |
+
"data": {
|
182 |
+
"application/vnd.jupyter.widget-view+json": {
|
183 |
+
"model_id": "a77c4b8db75c41bfbc994e0ecaf908cc",
|
184 |
+
"version_major": 2,
|
185 |
+
"version_minor": 0
|
186 |
+
},
|
187 |
+
"text/plain": [
|
188 |
+
"Generating train split: 0%| | 0/8551 [00:00<?, ? examples/s]"
|
189 |
+
]
|
190 |
+
},
|
191 |
+
"metadata": {},
|
192 |
+
"output_type": "display_data"
|
193 |
+
},
|
194 |
+
{
|
195 |
+
"data": {
|
196 |
+
"application/vnd.jupyter.widget-view+json": {
|
197 |
+
"model_id": "3876016d10e841b19a5653055fb4962b",
|
198 |
+
"version_major": 2,
|
199 |
+
"version_minor": 0
|
200 |
+
},
|
201 |
+
"text/plain": [
|
202 |
+
"Generating validation split: 0%| | 0/1043 [00:00<?, ? examples/s]"
|
203 |
+
]
|
204 |
+
},
|
205 |
+
"metadata": {},
|
206 |
+
"output_type": "display_data"
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"data": {
|
210 |
+
"application/vnd.jupyter.widget-view+json": {
|
211 |
+
"model_id": "b67c3bc5ae4242f5af5d9fc548ed578b",
|
212 |
+
"version_major": 2,
|
213 |
+
"version_minor": 0
|
214 |
+
},
|
215 |
+
"text/plain": [
|
216 |
+
"Generating test split: 0%| | 0/1063 [00:00<?, ? examples/s]"
|
217 |
+
]
|
218 |
+
},
|
219 |
+
"metadata": {},
|
220 |
+
"output_type": "display_data"
|
221 |
+
},
|
222 |
+
{
|
223 |
+
"name": "stderr",
|
224 |
+
"output_type": "stream",
|
225 |
+
"text": [
|
226 |
+
"/tmp/ipykernel_1505/1389288479.py:3: FutureWarning: load_metric is deprecated and will be removed in the next major version of datasets. Use 'evaluate.load' instead, from the new library 🤗 Evaluate: https://huggingface.co/docs/evaluate\n",
|
227 |
+
" metric = load_metric('glue', actual_task)\n",
|
228 |
+
"/home/ubuntu/.local/lib/python3.10/site-packages/datasets/load.py:756: FutureWarning: The repository for glue contains custom code which must be executed to correctly load the metric. You can inspect the repository content at https://raw.githubusercontent.com/huggingface/datasets/2.18.0/metrics/glue/glue.py\n",
|
229 |
+
"You can avoid this message in future by passing the argument `trust_remote_code=True`.\n",
|
230 |
+
"Passing `trust_remote_code=True` will be mandatory to load this metric from the next major release of `datasets`.\n",
|
231 |
+
" warnings.warn(\n"
|
232 |
+
]
|
233 |
+
},
|
234 |
+
{
|
235 |
+
"data": {
|
236 |
+
"application/vnd.jupyter.widget-view+json": {
|
237 |
+
"model_id": "d01b1cf183a94d019c84f09d3f282235",
|
238 |
+
"version_major": 2,
|
239 |
+
"version_minor": 0
|
240 |
+
},
|
241 |
+
"text/plain": [
|
242 |
+
"Downloading builder script: 0%| | 0.00/1.84k [00:00<?, ?B/s]"
|
243 |
+
]
|
244 |
+
},
|
245 |
+
"metadata": {},
|
246 |
+
"output_type": "display_data"
|
247 |
+
}
|
248 |
+
],
|
249 |
+
"source": [
|
250 |
+
"actual_task = \"mnli\" if task == \"mnli-mm\" else task\n",
|
251 |
+
"dataset = load_dataset(\"glue\", actual_task)\n",
|
252 |
+
"metric = load_metric('glue', actual_task)"
|
253 |
+
]
|
254 |
+
},
|
255 |
+
{
|
256 |
+
"cell_type": "code",
|
257 |
+
"execution_count": 6,
|
258 |
+
"id": "33cd1a8c-7ff3-475a-a434-1e90fb72af98",
|
259 |
+
"metadata": {},
|
260 |
+
"outputs": [],
|
261 |
+
"source": [
|
262 |
+
"import datasets\n",
|
263 |
+
"import random\n",
|
264 |
+
"import pandas as pd\n",
|
265 |
+
"from IPython.display import display, HTML\n",
|
266 |
+
"\n",
|
267 |
+
"def show_random_elements(dataset, num_examples=10):\n",
|
268 |
+
" assert num_examples <= len(dataset), \"Can't pick more elements than there are in the dataset.\"\n",
|
269 |
+
" picks = []\n",
|
270 |
+
" for _ in range(num_examples):\n",
|
271 |
+
" pick = random.randint(0, len(dataset)-1)\n",
|
272 |
+
" while pick in picks:\n",
|
273 |
+
" pick = random.randint(0, len(dataset)-1)\n",
|
274 |
+
" picks.append(pick)\n",
|
275 |
+
" \n",
|
276 |
+
" df = pd.DataFrame(dataset[picks])\n",
|
277 |
+
" for column, typ in dataset.features.items():\n",
|
278 |
+
" if isinstance(typ, datasets.ClassLabel):\n",
|
279 |
+
" df[column] = df[column].transform(lambda i: typ.names[i])\n",
|
280 |
+
" display(HTML(df.to_html()))"
|
281 |
+
]
|
282 |
+
},
|
283 |
+
{
|
284 |
+
"cell_type": "code",
|
285 |
+
"execution_count": 7,
|
286 |
+
"id": "0800efbd-8b6a-43b9-8359-4c546e1a3e2d",
|
287 |
+
"metadata": {},
|
288 |
+
"outputs": [
|
289 |
+
{
|
290 |
+
"data": {
|
291 |
+
"text/html": [
|
292 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
293 |
+
" <thead>\n",
|
294 |
+
" <tr style=\"text-align: right;\">\n",
|
295 |
+
" <th></th>\n",
|
296 |
+
" <th>sentence</th>\n",
|
297 |
+
" <th>label</th>\n",
|
298 |
+
" <th>idx</th>\n",
|
299 |
+
" </tr>\n",
|
300 |
+
" </thead>\n",
|
301 |
+
" <tbody>\n",
|
302 |
+
" <tr>\n",
|
303 |
+
" <th>0</th>\n",
|
304 |
+
" <td>Mary jumped the horse perfectly over the last fence.</td>\n",
|
305 |
+
" <td>acceptable</td>\n",
|
306 |
+
" <td>705</td>\n",
|
307 |
+
" </tr>\n",
|
308 |
+
" <tr>\n",
|
309 |
+
" <th>1</th>\n",
|
310 |
+
" <td>John taught new students English Syntax.</td>\n",
|
311 |
+
" <td>acceptable</td>\n",
|
312 |
+
" <td>3951</td>\n",
|
313 |
+
" </tr>\n",
|
314 |
+
" <tr>\n",
|
315 |
+
" <th>2</th>\n",
|
316 |
+
" <td>This doll is hard to see it.</td>\n",
|
317 |
+
" <td>unacceptable</td>\n",
|
318 |
+
" <td>5018</td>\n",
|
319 |
+
" </tr>\n",
|
320 |
+
" <tr>\n",
|
321 |
+
" <th>3</th>\n",
|
322 |
+
" <td>I whipped the eggs from a puddle into a froth.</td>\n",
|
323 |
+
" <td>unacceptable</td>\n",
|
324 |
+
" <td>2298</td>\n",
|
325 |
+
" </tr>\n",
|
326 |
+
" <tr>\n",
|
327 |
+
" <th>4</th>\n",
|
328 |
+
" <td>Bill wants John to leave.</td>\n",
|
329 |
+
" <td>acceptable</td>\n",
|
330 |
+
" <td>6157</td>\n",
|
331 |
+
" </tr>\n",
|
332 |
+
" <tr>\n",
|
333 |
+
" <th>5</th>\n",
|
334 |
+
" <td>John expect to must leave.</td>\n",
|
335 |
+
" <td>unacceptable</td>\n",
|
336 |
+
" <td>4481</td>\n",
|
337 |
+
" </tr>\n",
|
338 |
+
" <tr>\n",
|
339 |
+
" <th>6</th>\n",
|
340 |
+
" <td>Bill's mother saw him.</td>\n",
|
341 |
+
" <td>acceptable</td>\n",
|
342 |
+
" <td>7569</td>\n",
|
343 |
+
" </tr>\n",
|
344 |
+
" <tr>\n",
|
345 |
+
" <th>7</th>\n",
|
346 |
+
" <td>Once Janet left, Fred became all the crazier.</td>\n",
|
347 |
+
" <td>acceptable</td>\n",
|
348 |
+
" <td>226</td>\n",
|
349 |
+
" </tr>\n",
|
350 |
+
" <tr>\n",
|
351 |
+
" <th>8</th>\n",
|
352 |
+
" <td>He's too reliable a man.</td>\n",
|
353 |
+
" <td>acceptable</td>\n",
|
354 |
+
" <td>5440</td>\n",
|
355 |
+
" </tr>\n",
|
356 |
+
" <tr>\n",
|
357 |
+
" <th>9</th>\n",
|
358 |
+
" <td>I wonder if she used paints.</td>\n",
|
359 |
+
" <td>acceptable</td>\n",
|
360 |
+
" <td>7425</td>\n",
|
361 |
+
" </tr>\n",
|
362 |
+
" </tbody>\n",
|
363 |
+
"</table>"
|
364 |
+
],
|
365 |
+
"text/plain": [
|
366 |
+
"<IPython.core.display.HTML object>"
|
367 |
+
]
|
368 |
+
},
|
369 |
+
"metadata": {},
|
370 |
+
"output_type": "display_data"
|
371 |
+
}
|
372 |
+
],
|
373 |
+
"source": [
|
374 |
+
"show_random_elements(dataset[\"train\"])"
|
375 |
+
]
|
376 |
+
},
|
377 |
+
{
|
378 |
+
"cell_type": "code",
|
379 |
+
"execution_count": 8,
|
380 |
+
"id": "ce74eb02-1bf1-4ce9-b9f9-34ed0d7d1f8f",
|
381 |
+
"metadata": {},
|
382 |
+
"outputs": [
|
383 |
+
{
|
384 |
+
"data": {
|
385 |
+
"text/plain": [
|
386 |
+
"{'matthews_correlation': 0.0416070055112537}"
|
387 |
+
]
|
388 |
+
},
|
389 |
+
"execution_count": 8,
|
390 |
+
"metadata": {},
|
391 |
+
"output_type": "execute_result"
|
392 |
+
}
|
393 |
+
],
|
394 |
+
"source": [
|
395 |
+
"import numpy as np\n",
|
396 |
+
"\n",
|
397 |
+
"fake_preds = np.random.randint(0, 2, size=(64,))\n",
|
398 |
+
"fake_labels = np.random.randint(0, 2, size=(64,))\n",
|
399 |
+
"metric.compute(predictions=fake_preds, references=fake_labels)"
|
400 |
+
]
|
401 |
+
},
|
402 |
+
{
|
403 |
+
"cell_type": "code",
|
404 |
+
"execution_count": 9,
|
405 |
+
"id": "f5bd6db5-8786-477b-89a6-7ca21414f4ec",
|
406 |
+
"metadata": {},
|
407 |
+
"outputs": [
|
408 |
+
{
|
409 |
+
"data": {
|
410 |
+
"application/vnd.jupyter.widget-view+json": {
|
411 |
+
"model_id": "9f5d7bb9f48b4c6b816427eeb8b5fe5d",
|
412 |
+
"version_major": 2,
|
413 |
+
"version_minor": 0
|
414 |
+
},
|
415 |
+
"text/plain": [
|
416 |
+
"tokenizer_config.json: 0%| | 0.00/28.0 [00:00<?, ?B/s]"
|
417 |
+
]
|
418 |
+
},
|
419 |
+
"metadata": {},
|
420 |
+
"output_type": "display_data"
|
421 |
+
},
|
422 |
+
{
|
423 |
+
"data": {
|
424 |
+
"application/vnd.jupyter.widget-view+json": {
|
425 |
+
"model_id": "b6e68d7807c1445ab5554c7b6a838b73",
|
426 |
+
"version_major": 2,
|
427 |
+
"version_minor": 0
|
428 |
+
},
|
429 |
+
"text/plain": [
|
430 |
+
"config.json: 0%| | 0.00/483 [00:00<?, ?B/s]"
|
431 |
+
]
|
432 |
+
},
|
433 |
+
"metadata": {},
|
434 |
+
"output_type": "display_data"
|
435 |
+
},
|
436 |
+
{
|
437 |
+
"data": {
|
438 |
+
"application/vnd.jupyter.widget-view+json": {
|
439 |
+
"model_id": "8bd709d5ebfe410ba0e4c8c0aa40f599",
|
440 |
+
"version_major": 2,
|
441 |
+
"version_minor": 0
|
442 |
+
},
|
443 |
+
"text/plain": [
|
444 |
+
"vocab.txt: 0%| | 0.00/232k [00:00<?, ?B/s]"
|
445 |
+
]
|
446 |
+
},
|
447 |
+
"metadata": {},
|
448 |
+
"output_type": "display_data"
|
449 |
+
},
|
450 |
+
{
|
451 |
+
"data": {
|
452 |
+
"application/vnd.jupyter.widget-view+json": {
|
453 |
+
"model_id": "c158c3cb051d4575b33c2ec22d9491b7",
|
454 |
+
"version_major": 2,
|
455 |
+
"version_minor": 0
|
456 |
+
},
|
457 |
+
"text/plain": [
|
458 |
+
"tokenizer.json: 0%| | 0.00/466k [00:00<?, ?B/s]"
|
459 |
+
]
|
460 |
+
},
|
461 |
+
"metadata": {},
|
462 |
+
"output_type": "display_data"
|
463 |
+
}
|
464 |
+
],
|
465 |
+
"source": [
|
466 |
+
"from transformers import AutoTokenizer\n",
|
467 |
+
" \n",
|
468 |
+
"tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, use_fast=True)"
|
469 |
+
]
|
470 |
+
},
|
471 |
+
{
|
472 |
+
"cell_type": "code",
|
473 |
+
"execution_count": 10,
|
474 |
+
"id": "86da0827-3614-4f1c-969c-bc6c731225ab",
|
475 |
+
"metadata": {},
|
476 |
+
"outputs": [],
|
477 |
+
"source": [
|
478 |
+
"task_to_keys = {\n",
|
479 |
+
" \"cola\": (\"sentence\", None),\n",
|
480 |
+
" \"mnli\": (\"premise\", \"hypothesis\"),\n",
|
481 |
+
" \"mnli-mm\": (\"premise\", \"hypothesis\"),\n",
|
482 |
+
" \"mrpc\": (\"sentence1\", \"sentence2\"),\n",
|
483 |
+
" \"qnli\": (\"question\", \"sentence\"),\n",
|
484 |
+
" \"qqp\": (\"question1\", \"question2\"),\n",
|
485 |
+
" \"rte\": (\"sentence1\", \"sentence2\"),\n",
|
486 |
+
" \"sst2\": (\"sentence\", None),\n",
|
487 |
+
" \"stsb\": (\"sentence1\", \"sentence2\"),\n",
|
488 |
+
" \"wnli\": (\"sentence1\", \"sentence2\"),\n",
|
489 |
+
"}"
|
490 |
+
]
|
491 |
+
},
|
492 |
+
{
|
493 |
+
"cell_type": "code",
|
494 |
+
"execution_count": 11,
|
495 |
+
"id": "ce31302c-0aae-40ca-b6f6-385303507eba",
|
496 |
+
"metadata": {},
|
497 |
+
"outputs": [
|
498 |
+
{
|
499 |
+
"name": "stdout",
|
500 |
+
"output_type": "stream",
|
501 |
+
"text": [
|
502 |
+
"Sentence: Our friends won't buy this analysis, let alone the next one we propose.\n"
|
503 |
+
]
|
504 |
+
}
|
505 |
+
],
|
506 |
+
"source": [
|
507 |
+
"sentence1_key, sentence2_key = task_to_keys[task]\n",
|
508 |
+
"if sentence2_key is None:\n",
|
509 |
+
" print(f\"Sentence: {dataset['train'][0][sentence1_key]}\")\n",
|
510 |
+
"else:\n",
|
511 |
+
" print(f\"Sentence 1: {dataset['train'][0][sentence1_key]}\")\n",
|
512 |
+
" print(f\"Sentence 2: {dataset['train'][0][sentence2_key]}\")"
|
513 |
+
]
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"cell_type": "code",
|
517 |
+
"execution_count": 12,
|
518 |
+
"id": "eefc459b-6833-4291-812a-65b6a6e29e71",
|
519 |
+
"metadata": {},
|
520 |
+
"outputs": [],
|
521 |
+
"source": [
|
522 |
+
"def preprocess_function(examples):\n",
|
523 |
+
" if sentence2_key is None:\n",
|
524 |
+
" return tokenizer(examples[sentence1_key], truncation=True)\n",
|
525 |
+
" return tokenizer(examples[sentence1_key], examples[sentence2_key], truncation=True)"
|
526 |
+
]
|
527 |
+
},
|
528 |
+
{
|
529 |
+
"cell_type": "code",
|
530 |
+
"execution_count": 13,
|
531 |
+
"id": "890f5781-8031-46cf-9ba3-c65f9ad29810",
|
532 |
+
"metadata": {},
|
533 |
+
"outputs": [
|
534 |
+
{
|
535 |
+
"data": {
|
536 |
+
"application/vnd.jupyter.widget-view+json": {
|
537 |
+
"model_id": "5f98cc317d1a45d0a8bd00c95e7ed505",
|
538 |
+
"version_major": 2,
|
539 |
+
"version_minor": 0
|
540 |
+
},
|
541 |
+
"text/plain": [
|
542 |
+
"Map: 0%| | 0/8551 [00:00<?, ? examples/s]"
|
543 |
+
]
|
544 |
+
},
|
545 |
+
"metadata": {},
|
546 |
+
"output_type": "display_data"
|
547 |
+
},
|
548 |
+
{
|
549 |
+
"data": {
|
550 |
+
"application/vnd.jupyter.widget-view+json": {
|
551 |
+
"model_id": "4c73f2f8c73f473c836c96e31bbbbeae",
|
552 |
+
"version_major": 2,
|
553 |
+
"version_minor": 0
|
554 |
+
},
|
555 |
+
"text/plain": [
|
556 |
+
"Map: 0%| | 0/1043 [00:00<?, ? examples/s]"
|
557 |
+
]
|
558 |
+
},
|
559 |
+
"metadata": {},
|
560 |
+
"output_type": "display_data"
|
561 |
+
},
|
562 |
+
{
|
563 |
+
"data": {
|
564 |
+
"application/vnd.jupyter.widget-view+json": {
|
565 |
+
"model_id": "45cb3ffddeee41da8ec9b5f83a93d076",
|
566 |
+
"version_major": 2,
|
567 |
+
"version_minor": 0
|
568 |
+
},
|
569 |
+
"text/plain": [
|
570 |
+
"Map: 0%| | 0/1063 [00:00<?, ? examples/s]"
|
571 |
+
]
|
572 |
+
},
|
573 |
+
"metadata": {},
|
574 |
+
"output_type": "display_data"
|
575 |
+
}
|
576 |
+
],
|
577 |
+
"source": [
|
578 |
+
"encoded_dataset = dataset.map(preprocess_function, batched=True)"
|
579 |
+
]
|
580 |
+
},
|
581 |
+
{
|
582 |
+
"cell_type": "code",
|
583 |
+
"execution_count": 14,
|
584 |
+
"id": "656bfda6-45c8-4843-b7c3-f70e31578abe",
|
585 |
+
"metadata": {},
|
586 |
+
"outputs": [
|
587 |
+
{
|
588 |
+
"name": "stderr",
|
589 |
+
"output_type": "stream",
|
590 |
+
"text": [
|
591 |
+
"2024-03-27 11:00:29.468986: I tensorflow/core/util/port.cc:110] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.\n",
|
592 |
+
"2024-03-27 11:00:29.672421: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\n",
|
593 |
+
"To enable the following instructions: AVX512F AVX512_VNNI, in other operations, rebuild TensorFlow with the appropriate compiler flags.\n"
|
594 |
+
]
|
595 |
+
},
|
596 |
+
{
|
597 |
+
"data": {
|
598 |
+
"application/vnd.jupyter.widget-view+json": {
|
599 |
+
"model_id": "ff7f8f4314b14a43be4b599015552608",
|
600 |
+
"version_major": 2,
|
601 |
+
"version_minor": 0
|
602 |
+
},
|
603 |
+
"text/plain": [
|
604 |
+
"model.safetensors: 0%| | 0.00/268M [00:00<?, ?B/s]"
|
605 |
+
]
|
606 |
+
},
|
607 |
+
"metadata": {},
|
608 |
+
"output_type": "display_data"
|
609 |
+
},
|
610 |
+
{
|
611 |
+
"name": "stderr",
|
612 |
+
"output_type": "stream",
|
613 |
+
"text": [
|
614 |
+
"Some weights of DistilBertForSequenceClassification were not initialized from the model checkpoint at distilbert-base-uncased and are newly initialized: ['classifier.bias', 'classifier.weight', 'pre_classifier.bias', 'pre_classifier.weight']\n",
|
615 |
+
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
|
616 |
+
]
|
617 |
+
}
|
618 |
+
],
|
619 |
+
"source": [
|
620 |
+
"from transformers import AutoModelForSequenceClassification, TrainingArguments, Trainer\n",
|
621 |
+
"\n",
|
622 |
+
"num_labels = 3 if task.startswith(\"mnli\") else 1 if task==\"stsb\" else 2\n",
|
623 |
+
"model = AutoModelForSequenceClassification.from_pretrained(model_checkpoint, num_labels=num_labels)"
|
624 |
+
]
|
625 |
+
},
|
626 |
+
{
|
627 |
+
"cell_type": "code",
|
628 |
+
"execution_count": 15,
|
629 |
+
"id": "6b50c21a-abaa-41b6-85b9-952540de64d1",
|
630 |
+
"metadata": {},
|
631 |
+
"outputs": [],
|
632 |
+
"source": [
|
633 |
+
"metric_name = \"pearson\" if task == \"stsb\" else \"matthews_correlation\" if task == \"cola\" else \"accuracy\"\n",
|
634 |
+
"\n",
|
635 |
+
"args = TrainingArguments(\n",
|
636 |
+
" \"test-glue\",\n",
|
637 |
+
" evaluation_strategy = \"epoch\",\n",
|
638 |
+
" save_strategy = \"epoch\",\n",
|
639 |
+
" learning_rate=2e-5,\n",
|
640 |
+
" per_device_train_batch_size=batch_size,\n",
|
641 |
+
" per_device_eval_batch_size=batch_size,\n",
|
642 |
+
" num_train_epochs=5,\n",
|
643 |
+
" weight_decay=0.01,\n",
|
644 |
+
" load_best_model_at_end=True,\n",
|
645 |
+
" metric_for_best_model=metric_name,\n",
|
646 |
+
")"
|
647 |
+
]
|
648 |
+
},
|
649 |
+
{
|
650 |
+
"cell_type": "code",
|
651 |
+
"execution_count": 19,
|
652 |
+
"id": "65c8eb57-9536-42cd-91d4-33536ce383f3",
|
653 |
+
"metadata": {},
|
654 |
+
"outputs": [],
|
655 |
+
"source": [
|
656 |
+
"def compute_metrics(eval_pred):\n",
|
657 |
+
" predictions, labels = eval_pred\n",
|
658 |
+
" if task != \"stsb\":\n",
|
659 |
+
" predictions = np.argmax(predictions, axis=1)\n",
|
660 |
+
" else:\n",
|
661 |
+
" predictions = predictions[:, 0]\n",
|
662 |
+
" return metric.compute(predictions=predictions, references=labels)"
|
663 |
+
]
|
664 |
+
},
|
665 |
+
{
|
666 |
+
"cell_type": "code",
|
667 |
+
"execution_count": 20,
|
668 |
+
"id": "cb789ab8-0887-487b-9bfe-7c5e84aa66ec",
|
669 |
+
"metadata": {},
|
670 |
+
"outputs": [],
|
671 |
+
"source": [
|
672 |
+
"validation_key = \"validation_mismatched\" if task == \"mnli-mm\" else \"validation_matched\" if task == \"mnli\" else \"validation\"\n",
|
673 |
+
"trainer = Trainer(\n",
|
674 |
+
" model,\n",
|
675 |
+
" args,\n",
|
676 |
+
" train_dataset=encoded_dataset[\"train\"],\n",
|
677 |
+
" eval_dataset=encoded_dataset[validation_key],\n",
|
678 |
+
" tokenizer=tokenizer,\n",
|
679 |
+
" compute_metrics=compute_metrics\n",
|
680 |
+
")"
|
681 |
+
]
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"cell_type": "code",
|
685 |
+
"execution_count": 21,
|
686 |
+
"id": "8985fb22-4809-46e0-a6ab-c7df3e2a1e89",
|
687 |
+
"metadata": {},
|
688 |
+
"outputs": [
|
689 |
+
{
|
690 |
+
"data": {
|
691 |
+
"text/html": [
|
692 |
+
"\n",
|
693 |
+
" <div>\n",
|
694 |
+
" \n",
|
695 |
+
" <progress value='2675' max='2675' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
696 |
+
" [2675/2675 01:14, Epoch 5/5]\n",
|
697 |
+
" </div>\n",
|
698 |
+
" <table border=\"1\" class=\"dataframe\">\n",
|
699 |
+
" <thead>\n",
|
700 |
+
" <tr style=\"text-align: left;\">\n",
|
701 |
+
" <th>Epoch</th>\n",
|
702 |
+
" <th>Training Loss</th>\n",
|
703 |
+
" <th>Validation Loss</th>\n",
|
704 |
+
" <th>Matthews Correlation</th>\n",
|
705 |
+
" </tr>\n",
|
706 |
+
" </thead>\n",
|
707 |
+
" <tbody>\n",
|
708 |
+
" <tr>\n",
|
709 |
+
" <td>1</td>\n",
|
710 |
+
" <td>0.519000</td>\n",
|
711 |
+
" <td>0.472218</td>\n",
|
712 |
+
" <td>0.430751</td>\n",
|
713 |
+
" </tr>\n",
|
714 |
+
" <tr>\n",
|
715 |
+
" <td>2</td>\n",
|
716 |
+
" <td>0.349800</td>\n",
|
717 |
+
" <td>0.502173</td>\n",
|
718 |
+
" <td>0.535758</td>\n",
|
719 |
+
" </tr>\n",
|
720 |
+
" <tr>\n",
|
721 |
+
" <td>3</td>\n",
|
722 |
+
" <td>0.238200</td>\n",
|
723 |
+
" <td>0.617800</td>\n",
|
724 |
+
" <td>0.541004</td>\n",
|
725 |
+
" </tr>\n",
|
726 |
+
" <tr>\n",
|
727 |
+
" <td>4</td>\n",
|
728 |
+
" <td>0.173400</td>\n",
|
729 |
+
" <td>0.744248</td>\n",
|
730 |
+
" <td>0.549477</td>\n",
|
731 |
+
" </tr>\n",
|
732 |
+
" <tr>\n",
|
733 |
+
" <td>5</td>\n",
|
734 |
+
" <td>0.127800</td>\n",
|
735 |
+
" <td>0.803236</td>\n",
|
736 |
+
" <td>0.550403</td>\n",
|
737 |
+
" </tr>\n",
|
738 |
+
" </tbody>\n",
|
739 |
+
"</table><p>"
|
740 |
+
],
|
741 |
+
"text/plain": [
|
742 |
+
"<IPython.core.display.HTML object>"
|
743 |
+
]
|
744 |
+
},
|
745 |
+
"metadata": {},
|
746 |
+
"output_type": "display_data"
|
747 |
+
},
|
748 |
+
{
|
749 |
+
"data": {
|
750 |
+
"text/plain": [
|
751 |
+
"TrainOutput(global_step=2675, training_loss=0.27159803158768986, metrics={'train_runtime': 75.2661, 'train_samples_per_second': 568.051, 'train_steps_per_second': 35.541, 'total_flos': 229000686898068.0, 'train_loss': 0.27159803158768986, 'epoch': 5.0})"
|
752 |
+
]
|
753 |
+
},
|
754 |
+
"execution_count": 21,
|
755 |
+
"metadata": {},
|
756 |
+
"output_type": "execute_result"
|
757 |
+
}
|
758 |
+
],
|
759 |
+
"source": [
|
760 |
+
"trainer.train()"
|
761 |
+
]
|
762 |
+
},
|
763 |
+
{
|
764 |
+
"cell_type": "code",
|
765 |
+
"execution_count": 22,
|
766 |
+
"id": "e4106e5c-a37d-4e8f-b880-339e42daf57f",
|
767 |
+
"metadata": {},
|
768 |
+
"outputs": [
|
769 |
+
{
|
770 |
+
"data": {
|
771 |
+
"text/html": [
|
772 |
+
"\n",
|
773 |
+
" <div>\n",
|
774 |
+
" \n",
|
775 |
+
" <progress value='66' max='66' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
776 |
+
" [66/66 00:00]\n",
|
777 |
+
" </div>\n",
|
778 |
+
" "
|
779 |
+
],
|
780 |
+
"text/plain": [
|
781 |
+
"<IPython.core.display.HTML object>"
|
782 |
+
]
|
783 |
+
},
|
784 |
+
"metadata": {},
|
785 |
+
"output_type": "display_data"
|
786 |
+
},
|
787 |
+
{
|
788 |
+
"data": {
|
789 |
+
"text/plain": [
|
790 |
+
"{'eval_loss': 0.8032358288764954,\n",
|
791 |
+
" 'eval_matthews_correlation': 0.5504031254980248,\n",
|
792 |
+
" 'eval_runtime': 0.3257,\n",
|
793 |
+
" 'eval_samples_per_second': 3201.883,\n",
|
794 |
+
" 'eval_steps_per_second': 202.612,\n",
|
795 |
+
" 'epoch': 5.0}"
|
796 |
+
]
|
797 |
+
},
|
798 |
+
"execution_count": 22,
|
799 |
+
"metadata": {},
|
800 |
+
"output_type": "execute_result"
|
801 |
+
}
|
802 |
+
],
|
803 |
+
"source": [
|
804 |
+
"trainer.evaluate()"
|
805 |
+
]
|
806 |
+
},
|
807 |
+
{
|
808 |
+
"cell_type": "code",
|
809 |
+
"execution_count": 23,
|
810 |
+
"id": "703d1296-ce54-4281-b7d3-d487e545343a",
|
811 |
+
"metadata": {},
|
812 |
+
"outputs": [
|
813 |
+
{
|
814 |
+
"name": "stderr",
|
815 |
+
"output_type": "stream",
|
816 |
+
"text": [
|
817 |
+
"huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n",
|
818 |
+
"To disable this warning, you can either:\n",
|
819 |
+
"\t- Avoid using `tokenizers` before the fork if possible\n",
|
820 |
+
"\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n"
|
821 |
+
]
|
822 |
+
},
|
823 |
+
{
|
824 |
+
"name": "stdout",
|
825 |
+
"output_type": "stream",
|
826 |
+
"text": [
|
827 |
+
"Defaulting to user installation because normal site-packages is not writeable\n",
|
828 |
+
"Collecting optuna\n",
|
829 |
+
" Downloading optuna-3.6.0-py3-none-any.whl.metadata (17 kB)\n",
|
830 |
+
"Collecting alembic>=1.5.0 (from optuna)\n",
|
831 |
+
" Downloading alembic-1.13.1-py3-none-any.whl.metadata (7.4 kB)\n",
|
832 |
+
"Collecting colorlog (from optuna)\n",
|
833 |
+
" Downloading colorlog-6.8.2-py3-none-any.whl.metadata (10 kB)\n",
|
834 |
+
"Requirement already satisfied: numpy in ./.local/lib/python3.10/site-packages (from optuna) (1.25.2)\n",
|
835 |
+
"Requirement already satisfied: packaging>=20.0 in /usr/lib/python3/dist-packages (from optuna) (21.3)\n",
|
836 |
+
"Collecting sqlalchemy>=1.3.0 (from optuna)\n",
|
837 |
+
" Downloading SQLAlchemy-2.0.29-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (9.6 kB)\n",
|
838 |
+
"Requirement already satisfied: tqdm in ./.local/lib/python3.10/site-packages (from optuna) (4.66.1)\n",
|
839 |
+
"Requirement already satisfied: PyYAML in /usr/lib/python3/dist-packages (from optuna) (5.4.1)\n",
|
840 |
+
"Collecting Mako (from alembic>=1.5.0->optuna)\n",
|
841 |
+
" Downloading Mako-1.3.2-py3-none-any.whl.metadata (2.9 kB)\n",
|
842 |
+
"Requirement already satisfied: typing-extensions>=4 in ./.local/lib/python3.10/site-packages (from alembic>=1.5.0->optuna) (4.8.0)\n",
|
843 |
+
"Collecting greenlet!=0.4.17 (from sqlalchemy>=1.3.0->optuna)\n",
|
844 |
+
" Downloading greenlet-3.0.3-cp310-cp310-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl.metadata (3.8 kB)\n",
|
845 |
+
"Requirement already satisfied: MarkupSafe>=0.9.2 in /usr/lib/python3/dist-packages (from Mako->alembic>=1.5.0->optuna) (2.0.1)\n",
|
846 |
+
"Downloading optuna-3.6.0-py3-none-any.whl (379 kB)\n",
|
847 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m379.9/379.9 kB\u001b[0m \u001b[31m27.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
848 |
+
"\u001b[?25hDownloading alembic-1.13.1-py3-none-any.whl (233 kB)\n",
|
849 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m233.4/233.4 kB\u001b[0m \u001b[31m68.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
850 |
+
"\u001b[?25hDownloading SQLAlchemy-2.0.29-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB)\n",
|
851 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m3.1/3.1 MB\u001b[0m \u001b[31m209.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
852 |
+
"\u001b[?25hDownloading colorlog-6.8.2-py3-none-any.whl (11 kB)\n",
|
853 |
+
"Downloading greenlet-3.0.3-cp310-cp310-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl (616 kB)\n",
|
854 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m616.0/616.0 kB\u001b[0m \u001b[31m127.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
855 |
+
"\u001b[?25hDownloading Mako-1.3.2-py3-none-any.whl (78 kB)\n",
|
856 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m78.7/78.7 kB\u001b[0m \u001b[31m25.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
857 |
+
"\u001b[?25h\u001b[33mDEPRECATION: flatbuffers 1.12.1-git20200711.33e2d80-dfsg1-0.6 has a non-standard version number. pip 24.0 will enforce this behaviour change. A possible replacement is to upgrade to a newer version of flatbuffers or contact the author to suggest that they release a version with a conforming version number. Discussion can be found at https://github.com/pypa/pip/issues/12063\u001b[0m\u001b[33m\n",
|
858 |
+
"\u001b[0mInstalling collected packages: Mako, greenlet, colorlog, sqlalchemy, alembic, optuna\n",
|
859 |
+
"Successfully installed Mako-1.3.2 alembic-1.13.1 colorlog-6.8.2 greenlet-3.0.3 optuna-3.6.0 sqlalchemy-2.0.29\n",
|
860 |
+
"\n",
|
861 |
+
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m23.3.1\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m24.0\u001b[0m\n",
|
862 |
+
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpython3 -m pip install --upgrade pip\u001b[0m\n"
|
863 |
+
]
|
864 |
+
},
|
865 |
+
{
|
866 |
+
"name": "stderr",
|
867 |
+
"output_type": "stream",
|
868 |
+
"text": [
|
869 |
+
"huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n",
|
870 |
+
"To disable this warning, you can either:\n",
|
871 |
+
"\t- Avoid using `tokenizers` before the fork if possible\n",
|
872 |
+
"\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n"
|
873 |
+
]
|
874 |
+
},
|
875 |
+
{
|
876 |
+
"name": "stdout",
|
877 |
+
"output_type": "stream",
|
878 |
+
"text": [
|
879 |
+
"Defaulting to user installation because normal site-packages is not writeable\n",
|
880 |
+
"Collecting ray[tune]\n",
|
881 |
+
" Downloading ray-2.10.0-cp310-cp310-manylinux2014_x86_64.whl.metadata (13 kB)\n",
|
882 |
+
"Requirement already satisfied: click>=7.0 in /usr/lib/python3/dist-packages (from ray[tune]) (8.0.3)\n",
|
883 |
+
"Requirement already satisfied: filelock in /usr/lib/python3/dist-packages (from ray[tune]) (3.6.0)\n",
|
884 |
+
"Requirement already satisfied: jsonschema in ./.local/lib/python3.10/site-packages (from ray[tune]) (4.20.0)\n",
|
885 |
+
"Requirement already satisfied: msgpack<2.0.0,>=1.0.0 in /usr/lib/python3/dist-packages (from ray[tune]) (1.0.3)\n",
|
886 |
+
"Requirement already satisfied: packaging in /usr/lib/python3/dist-packages (from ray[tune]) (21.3)\n",
|
887 |
+
"Requirement already satisfied: protobuf!=3.19.5,>=3.15.3 in /usr/lib/python3/dist-packages (from ray[tune]) (4.21.12)\n",
|
888 |
+
"Requirement already satisfied: pyyaml in /usr/lib/python3/dist-packages (from ray[tune]) (5.4.1)\n",
|
889 |
+
"Requirement already satisfied: aiosignal in ./.local/lib/python3.10/site-packages (from ray[tune]) (1.3.1)\n",
|
890 |
+
"Requirement already satisfied: frozenlist in ./.local/lib/python3.10/site-packages (from ray[tune]) (1.4.1)\n",
|
891 |
+
"Requirement already satisfied: requests in ./.local/lib/python3.10/site-packages (from ray[tune]) (2.31.0)\n",
|
892 |
+
"Requirement already satisfied: pandas in /usr/lib/python3/dist-packages (from ray[tune]) (1.3.5)\n",
|
893 |
+
"Collecting tensorboardX>=1.9 (from ray[tune])\n",
|
894 |
+
" Downloading tensorboardX-2.6.2.2-py2.py3-none-any.whl.metadata (5.8 kB)\n",
|
895 |
+
"Requirement already satisfied: pyarrow>=6.0.1 in ./.local/lib/python3.10/site-packages (from ray[tune]) (15.0.2)\n",
|
896 |
+
"Requirement already satisfied: fsspec in ./.local/lib/python3.10/site-packages (from ray[tune]) (2024.2.0)\n",
|
897 |
+
"Requirement already satisfied: numpy<2,>=1.16.6 in ./.local/lib/python3.10/site-packages (from pyarrow>=6.0.1->ray[tune]) (1.25.2)\n",
|
898 |
+
"Requirement already satisfied: attrs>=22.2.0 in ./.local/lib/python3.10/site-packages (from jsonschema->ray[tune]) (23.1.0)\n",
|
899 |
+
"Requirement already satisfied: jsonschema-specifications>=2023.03.6 in ./.local/lib/python3.10/site-packages (from jsonschema->ray[tune]) (2023.11.2)\n",
|
900 |
+
"Requirement already satisfied: referencing>=0.28.4 in ./.local/lib/python3.10/site-packages (from jsonschema->ray[tune]) (0.31.1)\n",
|
901 |
+
"Requirement already satisfied: rpds-py>=0.7.1 in ./.local/lib/python3.10/site-packages (from jsonschema->ray[tune]) (0.13.2)\n",
|
902 |
+
"Requirement already satisfied: charset-normalizer<4,>=2 in ./.local/lib/python3.10/site-packages (from requests->ray[tune]) (3.3.2)\n",
|
903 |
+
"Requirement already satisfied: idna<4,>=2.5 in /usr/lib/python3/dist-packages (from requests->ray[tune]) (3.3)\n",
|
904 |
+
"Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/lib/python3/dist-packages (from requests->ray[tune]) (1.26.5)\n",
|
905 |
+
"Requirement already satisfied: certifi>=2017.4.17 in /usr/lib/python3/dist-packages (from requests->ray[tune]) (2020.6.20)\n",
|
906 |
+
"Downloading tensorboardX-2.6.2.2-py2.py3-none-any.whl (101 kB)\n",
|
907 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m101.7/101.7 kB\u001b[0m \u001b[31m3.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
908 |
+
"\u001b[?25hDownloading ray-2.10.0-cp310-cp310-manylinux2014_x86_64.whl (65.1 MB)\n",
|
909 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m65.1/65.1 MB\u001b[0m \u001b[31m97.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m:00:01\u001b[0m00:01\u001b[0m\n",
|
910 |
+
"\u001b[?25h\u001b[33mDEPRECATION: flatbuffers 1.12.1-git20200711.33e2d80-dfsg1-0.6 has a non-standard version number. pip 24.0 will enforce this behaviour change. A possible replacement is to upgrade to a newer version of flatbuffers or contact the author to suggest that they release a version with a conforming version number. Discussion can be found at https://github.com/pypa/pip/issues/12063\u001b[0m\u001b[33m\n",
|
911 |
+
"\u001b[0mInstalling collected packages: tensorboardX, ray\n",
|
912 |
+
"Successfully installed ray-2.10.0 tensorboardX-2.6.2.2\n",
|
913 |
+
"\n",
|
914 |
+
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m23.3.1\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m24.0\u001b[0m\n",
|
915 |
+
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpython3 -m pip install --upgrade pip\u001b[0m\n"
|
916 |
+
]
|
917 |
+
}
|
918 |
+
],
|
919 |
+
"source": [
|
920 |
+
"! pip install optuna\n",
|
921 |
+
"! pip install ray[tune]"
|
922 |
+
]
|
923 |
+
},
|
924 |
+
{
|
925 |
+
"cell_type": "code",
|
926 |
+
"execution_count": 24,
|
927 |
+
"id": "fae555d4-8640-4a81-9b49-4a9d9a5ab9b5",
|
928 |
+
"metadata": {},
|
929 |
+
"outputs": [],
|
930 |
+
"source": [
|
931 |
+
"def model_init():\n",
|
932 |
+
" return AutoModelForSequenceClassification.from_pretrained(model_checkpoint, num_labels=num_labels)"
|
933 |
+
]
|
934 |
+
},
|
935 |
+
{
|
936 |
+
"cell_type": "code",
|
937 |
+
"execution_count": 25,
|
938 |
+
"id": "ac0f793c-8418-48d1-9b37-41005f0095c3",
|
939 |
+
"metadata": {},
|
940 |
+
"outputs": [
|
941 |
+
{
|
942 |
+
"name": "stderr",
|
943 |
+
"output_type": "stream",
|
944 |
+
"text": [
|
945 |
+
"/home/ubuntu/.local/lib/python3.10/site-packages/accelerate/accelerator.py:432: FutureWarning: Passing the following arguments to `Accelerator` is deprecated and will be removed in version 1.0 of Accelerate: dict_keys(['dispatch_batches', 'split_batches', 'even_batches', 'use_seedable_sampler']). Please pass an `accelerate.DataLoaderConfiguration` instead: \n",
|
946 |
+
"dataloader_config = DataLoaderConfiguration(dispatch_batches=None, split_batches=False, even_batches=True, use_seedable_sampler=True)\n",
|
947 |
+
" warnings.warn(\n",
|
948 |
+
"Some weights of DistilBertForSequenceClassification were not initialized from the model checkpoint at distilbert-base-uncased and are newly initialized: ['classifier.bias', 'classifier.weight', 'pre_classifier.bias', 'pre_classifier.weight']\n",
|
949 |
+
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
|
950 |
+
]
|
951 |
+
}
|
952 |
+
],
|
953 |
+
"source": [
|
954 |
+
"trainer = Trainer(\n",
|
955 |
+
" model_init=model_init,\n",
|
956 |
+
" args=args,\n",
|
957 |
+
" train_dataset=encoded_dataset[\"train\"],\n",
|
958 |
+
" eval_dataset=encoded_dataset[validation_key],\n",
|
959 |
+
" tokenizer=tokenizer,\n",
|
960 |
+
" compute_metrics=compute_metrics\n",
|
961 |
+
")"
|
962 |
+
]
|
963 |
+
},
|
964 |
+
{
|
965 |
+
"cell_type": "code",
|
966 |
+
"execution_count": 26,
|
967 |
+
"id": "7d74518a-ebc0-43ac-accb-65c32d5ec118",
|
968 |
+
"metadata": {},
|
969 |
+
"outputs": [
|
970 |
+
{
|
971 |
+
"name": "stderr",
|
972 |
+
"output_type": "stream",
|
973 |
+
"text": [
|
974 |
+
"[I 2024-03-27 11:07:46,609] A new study created in memory with name: no-name-f7c7ff48-4767-4715-9c09-9c4565193c42\n",
|
975 |
+
"/home/ubuntu/.local/lib/python3.10/site-packages/accelerate/accelerator.py:432: FutureWarning: Passing the following arguments to `Accelerator` is deprecated and will be removed in version 1.0 of Accelerate: dict_keys(['dispatch_batches', 'split_batches', 'even_batches', 'use_seedable_sampler']). Please pass an `accelerate.DataLoaderConfiguration` instead: \n",
|
976 |
+
"dataloader_config = DataLoaderConfiguration(dispatch_batches=None, split_batches=False, even_batches=True, use_seedable_sampler=True)\n",
|
977 |
+
" warnings.warn(\n",
|
978 |
+
"Some weights of DistilBertForSequenceClassification were not initialized from the model checkpoint at distilbert-base-uncased and are newly initialized: ['classifier.bias', 'classifier.weight', 'pre_classifier.bias', 'pre_classifier.weight']\n",
|
979 |
+
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
|
980 |
+
]
|
981 |
+
},
|
982 |
+
{
|
983 |
+
"data": {
|
984 |
+
"text/html": [
|
985 |
+
"\n",
|
986 |
+
" <div>\n",
|
987 |
+
" \n",
|
988 |
+
" <progress value='2140' max='2140' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
989 |
+
" [2140/2140 00:59, Epoch 4/4]\n",
|
990 |
+
" </div>\n",
|
991 |
+
" <table border=\"1\" class=\"dataframe\">\n",
|
992 |
+
" <thead>\n",
|
993 |
+
" <tr style=\"text-align: left;\">\n",
|
994 |
+
" <th>Epoch</th>\n",
|
995 |
+
" <th>Training Loss</th>\n",
|
996 |
+
" <th>Validation Loss</th>\n",
|
997 |
+
" <th>Matthews Correlation</th>\n",
|
998 |
+
" </tr>\n",
|
999 |
+
" </thead>\n",
|
1000 |
+
" <tbody>\n",
|
1001 |
+
" <tr>\n",
|
1002 |
+
" <td>1</td>\n",
|
1003 |
+
" <td>0.568600</td>\n",
|
1004 |
+
" <td>0.528286</td>\n",
|
1005 |
+
" <td>0.318150</td>\n",
|
1006 |
+
" </tr>\n",
|
1007 |
+
" <tr>\n",
|
1008 |
+
" <td>2</td>\n",
|
1009 |
+
" <td>0.390500</td>\n",
|
1010 |
+
" <td>0.564842</td>\n",
|
1011 |
+
" <td>0.387962</td>\n",
|
1012 |
+
" </tr>\n",
|
1013 |
+
" <tr>\n",
|
1014 |
+
" <td>3</td>\n",
|
1015 |
+
" <td>0.237300</td>\n",
|
1016 |
+
" <td>0.725552</td>\n",
|
1017 |
+
" <td>0.436872</td>\n",
|
1018 |
+
" </tr>\n",
|
1019 |
+
" <tr>\n",
|
1020 |
+
" <td>4</td>\n",
|
1021 |
+
" <td>0.139100</td>\n",
|
1022 |
+
" <td>0.973828</td>\n",
|
1023 |
+
" <td>0.429154</td>\n",
|
1024 |
+
" </tr>\n",
|
1025 |
+
" </tbody>\n",
|
1026 |
+
"</table><p>"
|
1027 |
+
],
|
1028 |
+
"text/plain": [
|
1029 |
+
"<IPython.core.display.HTML object>"
|
1030 |
+
]
|
1031 |
+
},
|
1032 |
+
"metadata": {},
|
1033 |
+
"output_type": "display_data"
|
1034 |
+
},
|
1035 |
+
{
|
1036 |
+
"name": "stderr",
|
1037 |
+
"output_type": "stream",
|
1038 |
+
"text": [
|
1039 |
+
"[I 2024-03-27 11:08:46,135] Trial 0 finished with value: 0.42915398713994973 and parameters: {'learning_rate': 6.658969020177832e-05, 'num_train_epochs': 4, 'seed': 11, 'per_device_train_batch_size': 16}. Best is trial 0 with value: 0.42915398713994973.\n",
|
1040 |
+
"/home/ubuntu/.local/lib/python3.10/site-packages/accelerate/accelerator.py:432: FutureWarning: Passing the following arguments to `Accelerator` is deprecated and will be removed in version 1.0 of Accelerate: dict_keys(['dispatch_batches', 'split_batches', 'even_batches', 'use_seedable_sampler']). Please pass an `accelerate.DataLoaderConfiguration` instead: \n",
|
1041 |
+
"dataloader_config = DataLoaderConfiguration(dispatch_batches=None, split_batches=False, even_batches=True, use_seedable_sampler=True)\n",
|
1042 |
+
" warnings.warn(\n",
|
1043 |
+
"Some weights of DistilBertForSequenceClassification were not initialized from the model checkpoint at distilbert-base-uncased and are newly initialized: ['classifier.bias', 'classifier.weight', 'pre_classifier.bias', 'pre_classifier.weight']\n",
|
1044 |
+
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
|
1045 |
+
]
|
1046 |
+
},
|
1047 |
+
{
|
1048 |
+
"data": {
|
1049 |
+
"text/html": [
|
1050 |
+
"\n",
|
1051 |
+
" <div>\n",
|
1052 |
+
" \n",
|
1053 |
+
" <progress value='402' max='402' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
1054 |
+
" [402/402 00:26, Epoch 3/3]\n",
|
1055 |
+
" </div>\n",
|
1056 |
+
" <table border=\"1\" class=\"dataframe\">\n",
|
1057 |
+
" <thead>\n",
|
1058 |
+
" <tr style=\"text-align: left;\">\n",
|
1059 |
+
" <th>Epoch</th>\n",
|
1060 |
+
" <th>Training Loss</th>\n",
|
1061 |
+
" <th>Validation Loss</th>\n",
|
1062 |
+
" <th>Matthews Correlation</th>\n",
|
1063 |
+
" </tr>\n",
|
1064 |
+
" </thead>\n",
|
1065 |
+
" <tbody>\n",
|
1066 |
+
" <tr>\n",
|
1067 |
+
" <td>1</td>\n",
|
1068 |
+
" <td>No log</td>\n",
|
1069 |
+
" <td>0.531186</td>\n",
|
1070 |
+
" <td>0.332502</td>\n",
|
1071 |
+
" </tr>\n",
|
1072 |
+
" <tr>\n",
|
1073 |
+
" <td>2</td>\n",
|
1074 |
+
" <td>No log</td>\n",
|
1075 |
+
" <td>0.503717</td>\n",
|
1076 |
+
" <td>0.443275</td>\n",
|
1077 |
+
" </tr>\n",
|
1078 |
+
" <tr>\n",
|
1079 |
+
" <td>3</td>\n",
|
1080 |
+
" <td>No log</td>\n",
|
1081 |
+
" <td>0.507968</td>\n",
|
1082 |
+
" <td>0.439255</td>\n",
|
1083 |
+
" </tr>\n",
|
1084 |
+
" </tbody>\n",
|
1085 |
+
"</table><p>"
|
1086 |
+
],
|
1087 |
+
"text/plain": [
|
1088 |
+
"<IPython.core.display.HTML object>"
|
1089 |
+
]
|
1090 |
+
},
|
1091 |
+
"metadata": {},
|
1092 |
+
"output_type": "display_data"
|
1093 |
+
},
|
1094 |
+
{
|
1095 |
+
"name": "stderr",
|
1096 |
+
"output_type": "stream",
|
1097 |
+
"text": [
|
1098 |
+
"[I 2024-03-27 11:09:13,247] Trial 1 finished with value: 0.4392548203439382 and parameters: {'learning_rate': 1.1290628476063563e-05, 'num_train_epochs': 3, 'seed': 28, 'per_device_train_batch_size': 64}. Best is trial 1 with value: 0.4392548203439382.\n",
|
1099 |
+
"/home/ubuntu/.local/lib/python3.10/site-packages/accelerate/accelerator.py:432: FutureWarning: Passing the following arguments to `Accelerator` is deprecated and will be removed in version 1.0 of Accelerate: dict_keys(['dispatch_batches', 'split_batches', 'even_batches', 'use_seedable_sampler']). Please pass an `accelerate.DataLoaderConfiguration` instead: \n",
|
1100 |
+
"dataloader_config = DataLoaderConfiguration(dispatch_batches=None, split_batches=False, even_batches=True, use_seedable_sampler=True)\n",
|
1101 |
+
" warnings.warn(\n",
|
1102 |
+
"Some weights of DistilBertForSequenceClassification were not initialized from the model checkpoint at distilbert-base-uncased and are newly initialized: ['classifier.bias', 'classifier.weight', 'pre_classifier.bias', 'pre_classifier.weight']\n",
|
1103 |
+
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
|
1104 |
+
]
|
1105 |
+
},
|
1106 |
+
{
|
1107 |
+
"data": {
|
1108 |
+
"text/html": [
|
1109 |
+
"\n",
|
1110 |
+
" <div>\n",
|
1111 |
+
" \n",
|
1112 |
+
" <progress value='8552' max='8552' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
1113 |
+
" [8552/8552 03:23, Epoch 4/4]\n",
|
1114 |
+
" </div>\n",
|
1115 |
+
" <table border=\"1\" class=\"dataframe\">\n",
|
1116 |
+
" <thead>\n",
|
1117 |
+
" <tr style=\"text-align: left;\">\n",
|
1118 |
+
" <th>Epoch</th>\n",
|
1119 |
+
" <th>Training Loss</th>\n",
|
1120 |
+
" <th>Validation Loss</th>\n",
|
1121 |
+
" <th>Matthews Correlation</th>\n",
|
1122 |
+
" </tr>\n",
|
1123 |
+
" </thead>\n",
|
1124 |
+
" <tbody>\n",
|
1125 |
+
" <tr>\n",
|
1126 |
+
" <td>1</td>\n",
|
1127 |
+
" <td>0.531300</td>\n",
|
1128 |
+
" <td>0.566970</td>\n",
|
1129 |
+
" <td>0.414967</td>\n",
|
1130 |
+
" </tr>\n",
|
1131 |
+
" <tr>\n",
|
1132 |
+
" <td>2</td>\n",
|
1133 |
+
" <td>0.512400</td>\n",
|
1134 |
+
" <td>0.786295</td>\n",
|
1135 |
+
" <td>0.472533</td>\n",
|
1136 |
+
" </tr>\n",
|
1137 |
+
" <tr>\n",
|
1138 |
+
" <td>3</td>\n",
|
1139 |
+
" <td>0.381700</td>\n",
|
1140 |
+
" <td>0.904949</td>\n",
|
1141 |
+
" <td>0.502075</td>\n",
|
1142 |
+
" </tr>\n",
|
1143 |
+
" <tr>\n",
|
1144 |
+
" <td>4</td>\n",
|
1145 |
+
" <td>0.272600</td>\n",
|
1146 |
+
" <td>1.014711</td>\n",
|
1147 |
+
" <td>0.494873</td>\n",
|
1148 |
+
" </tr>\n",
|
1149 |
+
" </tbody>\n",
|
1150 |
+
"</table><p>"
|
1151 |
+
],
|
1152 |
+
"text/plain": [
|
1153 |
+
"<IPython.core.display.HTML object>"
|
1154 |
+
]
|
1155 |
+
},
|
1156 |
+
"metadata": {},
|
1157 |
+
"output_type": "display_data"
|
1158 |
+
},
|
1159 |
+
{
|
1160 |
+
"name": "stderr",
|
1161 |
+
"output_type": "stream",
|
1162 |
+
"text": [
|
1163 |
+
"[I 2024-03-27 11:12:37,216] Trial 2 finished with value: 0.4948726793760845 and parameters: {'learning_rate': 8.36801127282771e-06, 'num_train_epochs': 4, 'seed': 12, 'per_device_train_batch_size': 4}. Best is trial 2 with value: 0.4948726793760845.\n",
|
1164 |
+
"/home/ubuntu/.local/lib/python3.10/site-packages/accelerate/accelerator.py:432: FutureWarning: Passing the following arguments to `Accelerator` is deprecated and will be removed in version 1.0 of Accelerate: dict_keys(['dispatch_batches', 'split_batches', 'even_batches', 'use_seedable_sampler']). Please pass an `accelerate.DataLoaderConfiguration` instead: \n",
|
1165 |
+
"dataloader_config = DataLoaderConfiguration(dispatch_batches=None, split_batches=False, even_batches=True, use_seedable_sampler=True)\n",
|
1166 |
+
" warnings.warn(\n",
|
1167 |
+
"Some weights of DistilBertForSequenceClassification were not initialized from the model checkpoint at distilbert-base-uncased and are newly initialized: ['classifier.bias', 'classifier.weight', 'pre_classifier.bias', 'pre_classifier.weight']\n",
|
1168 |
+
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
|
1169 |
+
]
|
1170 |
+
},
|
1171 |
+
{
|
1172 |
+
"data": {
|
1173 |
+
"text/html": [
|
1174 |
+
"\n",
|
1175 |
+
" <div>\n",
|
1176 |
+
" \n",
|
1177 |
+
" <progress value='536' max='536' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
1178 |
+
" [536/536 00:21, Epoch 2/2]\n",
|
1179 |
+
" </div>\n",
|
1180 |
+
" <table border=\"1\" class=\"dataframe\">\n",
|
1181 |
+
" <thead>\n",
|
1182 |
+
" <tr style=\"text-align: left;\">\n",
|
1183 |
+
" <th>Epoch</th>\n",
|
1184 |
+
" <th>Training Loss</th>\n",
|
1185 |
+
" <th>Validation Loss</th>\n",
|
1186 |
+
" <th>Matthews Correlation</th>\n",
|
1187 |
+
" </tr>\n",
|
1188 |
+
" </thead>\n",
|
1189 |
+
" <tbody>\n",
|
1190 |
+
" <tr>\n",
|
1191 |
+
" <td>1</td>\n",
|
1192 |
+
" <td>No log</td>\n",
|
1193 |
+
" <td>0.479286</td>\n",
|
1194 |
+
" <td>0.436850</td>\n",
|
1195 |
+
" </tr>\n",
|
1196 |
+
" <tr>\n",
|
1197 |
+
" <td>2</td>\n",
|
1198 |
+
" <td>0.414800</td>\n",
|
1199 |
+
" <td>0.520329</td>\n",
|
1200 |
+
" <td>0.502552</td>\n",
|
1201 |
+
" </tr>\n",
|
1202 |
+
" </tbody>\n",
|
1203 |
+
"</table><p>"
|
1204 |
+
],
|
1205 |
+
"text/plain": [
|
1206 |
+
"<IPython.core.display.HTML object>"
|
1207 |
+
]
|
1208 |
+
},
|
1209 |
+
"metadata": {},
|
1210 |
+
"output_type": "display_data"
|
1211 |
+
},
|
1212 |
+
{
|
1213 |
+
"name": "stderr",
|
1214 |
+
"output_type": "stream",
|
1215 |
+
"text": [
|
1216 |
+
"[I 2024-03-27 11:12:59,219] Trial 3 finished with value: 0.5025517897100551 and parameters: {'learning_rate': 9.440074279431108e-05, 'num_train_epochs': 2, 'seed': 17, 'per_device_train_batch_size': 32}. Best is trial 3 with value: 0.5025517897100551.\n",
|
1217 |
+
"/home/ubuntu/.local/lib/python3.10/site-packages/accelerate/accelerator.py:432: FutureWarning: Passing the following arguments to `Accelerator` is deprecated and will be removed in version 1.0 of Accelerate: dict_keys(['dispatch_batches', 'split_batches', 'even_batches', 'use_seedable_sampler']). Please pass an `accelerate.DataLoaderConfiguration` instead: \n",
|
1218 |
+
"dataloader_config = DataLoaderConfiguration(dispatch_batches=None, split_batches=False, even_batches=True, use_seedable_sampler=True)\n",
|
1219 |
+
" warnings.warn(\n",
|
1220 |
+
"Some weights of DistilBertForSequenceClassification were not initialized from the model checkpoint at distilbert-base-uncased and are newly initialized: ['classifier.bias', 'classifier.weight', 'pre_classifier.bias', 'pre_classifier.weight']\n",
|
1221 |
+
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
|
1222 |
+
]
|
1223 |
+
},
|
1224 |
+
{
|
1225 |
+
"data": {
|
1226 |
+
"text/html": [
|
1227 |
+
"\n",
|
1228 |
+
" <div>\n",
|
1229 |
+
" \n",
|
1230 |
+
" <progress value='535' max='535' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
1231 |
+
" [535/535 00:14, Epoch 1/1]\n",
|
1232 |
+
" </div>\n",
|
1233 |
+
" <table border=\"1\" class=\"dataframe\">\n",
|
1234 |
+
" <thead>\n",
|
1235 |
+
" <tr style=\"text-align: left;\">\n",
|
1236 |
+
" <th>Epoch</th>\n",
|
1237 |
+
" <th>Training Loss</th>\n",
|
1238 |
+
" <th>Validation Loss</th>\n",
|
1239 |
+
" <th>Matthews Correlation</th>\n",
|
1240 |
+
" </tr>\n",
|
1241 |
+
" </thead>\n",
|
1242 |
+
" <tbody>\n",
|
1243 |
+
" <tr>\n",
|
1244 |
+
" <td>1</td>\n",
|
1245 |
+
" <td>0.615000</td>\n",
|
1246 |
+
" <td>0.603050</td>\n",
|
1247 |
+
" <td>0.000000</td>\n",
|
1248 |
+
" </tr>\n",
|
1249 |
+
" </tbody>\n",
|
1250 |
+
"</table><p>"
|
1251 |
+
],
|
1252 |
+
"text/plain": [
|
1253 |
+
"<IPython.core.display.HTML object>"
|
1254 |
+
]
|
1255 |
+
},
|
1256 |
+
"metadata": {},
|
1257 |
+
"output_type": "display_data"
|
1258 |
+
},
|
1259 |
+
{
|
1260 |
+
"name": "stderr",
|
1261 |
+
"output_type": "stream",
|
1262 |
+
"text": [
|
1263 |
+
"/usr/lib/python3/dist-packages/sklearn/metrics/_classification.py:846: RuntimeWarning: invalid value encountered in scalar divide\n",
|
1264 |
+
" mcc = cov_ytyp / np.sqrt(cov_ytyt * cov_ypyp)\n",
|
1265 |
+
"[I 2024-03-27 11:13:14,620] Trial 4 finished with value: 0.0 and parameters: {'learning_rate': 1.8300985987395685e-06, 'num_train_epochs': 1, 'seed': 13, 'per_device_train_batch_size': 16}. Best is trial 3 with value: 0.5025517897100551.\n",
|
1266 |
+
"/home/ubuntu/.local/lib/python3.10/site-packages/accelerate/accelerator.py:432: FutureWarning: Passing the following arguments to `Accelerator` is deprecated and will be removed in version 1.0 of Accelerate: dict_keys(['dispatch_batches', 'split_batches', 'even_batches', 'use_seedable_sampler']). Please pass an `accelerate.DataLoaderConfiguration` instead: \n",
|
1267 |
+
"dataloader_config = DataLoaderConfiguration(dispatch_batches=None, split_batches=False, even_batches=True, use_seedable_sampler=True)\n",
|
1268 |
+
" warnings.warn(\n",
|
1269 |
+
"Some weights of DistilBertForSequenceClassification were not initialized from the model checkpoint at distilbert-base-uncased and are newly initialized: ['classifier.bias', 'classifier.weight', 'pre_classifier.bias', 'pre_classifier.weight']\n",
|
1270 |
+
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
|
1271 |
+
]
|
1272 |
+
},
|
1273 |
+
{
|
1274 |
+
"data": {
|
1275 |
+
"text/html": [
|
1276 |
+
"\n",
|
1277 |
+
" <div>\n",
|
1278 |
+
" \n",
|
1279 |
+
" <progress value='2138' max='10690' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
1280 |
+
" [ 2138/10690 00:50 < 03:20, 42.59 it/s, Epoch 1/5]\n",
|
1281 |
+
" </div>\n",
|
1282 |
+
" <table border=\"1\" class=\"dataframe\">\n",
|
1283 |
+
" <thead>\n",
|
1284 |
+
" <tr style=\"text-align: left;\">\n",
|
1285 |
+
" <th>Epoch</th>\n",
|
1286 |
+
" <th>Training Loss</th>\n",
|
1287 |
+
" <th>Validation Loss</th>\n",
|
1288 |
+
" <th>Matthews Correlation</th>\n",
|
1289 |
+
" </tr>\n",
|
1290 |
+
" </thead>\n",
|
1291 |
+
" <tbody>\n",
|
1292 |
+
" <tr>\n",
|
1293 |
+
" <td>1</td>\n",
|
1294 |
+
" <td>0.535100</td>\n",
|
1295 |
+
" <td>0.573925</td>\n",
|
1296 |
+
" <td>0.380639</td>\n",
|
1297 |
+
" </tr>\n",
|
1298 |
+
" </tbody>\n",
|
1299 |
+
"</table><p>"
|
1300 |
+
],
|
1301 |
+
"text/plain": [
|
1302 |
+
"<IPython.core.display.HTML object>"
|
1303 |
+
]
|
1304 |
+
},
|
1305 |
+
"metadata": {},
|
1306 |
+
"output_type": "display_data"
|
1307 |
+
},
|
1308 |
+
{
|
1309 |
+
"name": "stderr",
|
1310 |
+
"output_type": "stream",
|
1311 |
+
"text": [
|
1312 |
+
"[I 2024-03-27 11:14:05,400] Trial 5 pruned. \n",
|
1313 |
+
"Some weights of DistilBertForSequenceClassification were not initialized from the model checkpoint at distilbert-base-uncased and are newly initialized: ['classifier.bias', 'classifier.weight', 'pre_classifier.bias', 'pre_classifier.weight']\n",
|
1314 |
+
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
|
1315 |
+
]
|
1316 |
+
},
|
1317 |
+
{
|
1318 |
+
"data": {
|
1319 |
+
"text/html": [
|
1320 |
+
"\n",
|
1321 |
+
" <div>\n",
|
1322 |
+
" \n",
|
1323 |
+
" <progress value='134' max='402' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
1324 |
+
" [134/402 00:08 < 00:16, 16.04 it/s, Epoch 1/3]\n",
|
1325 |
+
" </div>\n",
|
1326 |
+
" <table border=\"1\" class=\"dataframe\">\n",
|
1327 |
+
" <thead>\n",
|
1328 |
+
" <tr style=\"text-align: left;\">\n",
|
1329 |
+
" <th>Epoch</th>\n",
|
1330 |
+
" <th>Training Loss</th>\n",
|
1331 |
+
" <th>Validation Loss</th>\n",
|
1332 |
+
" <th>Matthews Correlation</th>\n",
|
1333 |
+
" </tr>\n",
|
1334 |
+
" </thead>\n",
|
1335 |
+
" <tbody>\n",
|
1336 |
+
" <tr>\n",
|
1337 |
+
" <td>1</td>\n",
|
1338 |
+
" <td>No log</td>\n",
|
1339 |
+
" <td>0.598633</td>\n",
|
1340 |
+
" <td>0.000000</td>\n",
|
1341 |
+
" </tr>\n",
|
1342 |
+
" </tbody>\n",
|
1343 |
+
"</table><p>"
|
1344 |
+
],
|
1345 |
+
"text/plain": [
|
1346 |
+
"<IPython.core.display.HTML object>"
|
1347 |
+
]
|
1348 |
+
},
|
1349 |
+
"metadata": {},
|
1350 |
+
"output_type": "display_data"
|
1351 |
+
},
|
1352 |
+
{
|
1353 |
+
"name": "stderr",
|
1354 |
+
"output_type": "stream",
|
1355 |
+
"text": [
|
1356 |
+
"/usr/lib/python3/dist-packages/sklearn/metrics/_classification.py:846: RuntimeWarning: invalid value encountered in scalar divide\n",
|
1357 |
+
" mcc = cov_ytyp / np.sqrt(cov_ytyt * cov_ypyp)\n",
|
1358 |
+
"[I 2024-03-27 11:14:14,176] Trial 6 pruned. \n",
|
1359 |
+
"Some weights of DistilBertForSequenceClassification were not initialized from the model checkpoint at distilbert-base-uncased and are newly initialized: ['classifier.bias', 'classifier.weight', 'pre_classifier.bias', 'pre_classifier.weight']\n",
|
1360 |
+
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
|
1361 |
+
]
|
1362 |
+
},
|
1363 |
+
{
|
1364 |
+
"data": {
|
1365 |
+
"text/html": [
|
1366 |
+
"\n",
|
1367 |
+
" <div>\n",
|
1368 |
+
" \n",
|
1369 |
+
" <progress value='1069' max='1069' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
1370 |
+
" [1069/1069 00:26, Epoch 1/1]\n",
|
1371 |
+
" </div>\n",
|
1372 |
+
" <table border=\"1\" class=\"dataframe\">\n",
|
1373 |
+
" <thead>\n",
|
1374 |
+
" <tr style=\"text-align: left;\">\n",
|
1375 |
+
" <th>Epoch</th>\n",
|
1376 |
+
" <th>Training Loss</th>\n",
|
1377 |
+
" <th>Validation Loss</th>\n",
|
1378 |
+
" <th>Matthews Correlation</th>\n",
|
1379 |
+
" </tr>\n",
|
1380 |
+
" </thead>\n",
|
1381 |
+
" <tbody>\n",
|
1382 |
+
" <tr>\n",
|
1383 |
+
" <td>1</td>\n",
|
1384 |
+
" <td>0.503800</td>\n",
|
1385 |
+
" <td>0.527398</td>\n",
|
1386 |
+
" <td>0.379181</td>\n",
|
1387 |
+
" </tr>\n",
|
1388 |
+
" </tbody>\n",
|
1389 |
+
"</table><p>"
|
1390 |
+
],
|
1391 |
+
"text/plain": [
|
1392 |
+
"<IPython.core.display.HTML object>"
|
1393 |
+
]
|
1394 |
+
},
|
1395 |
+
"metadata": {},
|
1396 |
+
"output_type": "display_data"
|
1397 |
+
},
|
1398 |
+
{
|
1399 |
+
"name": "stderr",
|
1400 |
+
"output_type": "stream",
|
1401 |
+
"text": [
|
1402 |
+
"[I 2024-03-27 11:14:40,919] Trial 7 finished with value: 0.37918052306046424 and parameters: {'learning_rate': 1.0727131909090178e-05, 'num_train_epochs': 1, 'seed': 37, 'per_device_train_batch_size': 8}. Best is trial 3 with value: 0.5025517897100551.\n",
|
1403 |
+
"/home/ubuntu/.local/lib/python3.10/site-packages/accelerate/accelerator.py:432: FutureWarning: Passing the following arguments to `Accelerator` is deprecated and will be removed in version 1.0 of Accelerate: dict_keys(['dispatch_batches', 'split_batches', 'even_batches', 'use_seedable_sampler']). Please pass an `accelerate.DataLoaderConfiguration` instead: \n",
|
1404 |
+
"dataloader_config = DataLoaderConfiguration(dispatch_batches=None, split_batches=False, even_batches=True, use_seedable_sampler=True)\n",
|
1405 |
+
" warnings.warn(\n",
|
1406 |
+
"Some weights of DistilBertForSequenceClassification were not initialized from the model checkpoint at distilbert-base-uncased and are newly initialized: ['classifier.bias', 'classifier.weight', 'pre_classifier.bias', 'pre_classifier.weight']\n",
|
1407 |
+
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
|
1408 |
+
]
|
1409 |
+
},
|
1410 |
+
{
|
1411 |
+
"data": {
|
1412 |
+
"text/html": [
|
1413 |
+
"\n",
|
1414 |
+
" <div>\n",
|
1415 |
+
" \n",
|
1416 |
+
" <progress value='2138' max='2138' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
1417 |
+
" [2138/2138 00:52, Epoch 2/2]\n",
|
1418 |
+
" </div>\n",
|
1419 |
+
" <table border=\"1\" class=\"dataframe\">\n",
|
1420 |
+
" <thead>\n",
|
1421 |
+
" <tr style=\"text-align: left;\">\n",
|
1422 |
+
" <th>Epoch</th>\n",
|
1423 |
+
" <th>Training Loss</th>\n",
|
1424 |
+
" <th>Validation Loss</th>\n",
|
1425 |
+
" <th>Matthews Correlation</th>\n",
|
1426 |
+
" </tr>\n",
|
1427 |
+
" </thead>\n",
|
1428 |
+
" <tbody>\n",
|
1429 |
+
" <tr>\n",
|
1430 |
+
" <td>1</td>\n",
|
1431 |
+
" <td>0.528000</td>\n",
|
1432 |
+
" <td>0.511369</td>\n",
|
1433 |
+
" <td>0.389045</td>\n",
|
1434 |
+
" </tr>\n",
|
1435 |
+
" <tr>\n",
|
1436 |
+
" <td>2</td>\n",
|
1437 |
+
" <td>0.357900</td>\n",
|
1438 |
+
" <td>0.638603</td>\n",
|
1439 |
+
" <td>0.463981</td>\n",
|
1440 |
+
" </tr>\n",
|
1441 |
+
" </tbody>\n",
|
1442 |
+
"</table><p>"
|
1443 |
+
],
|
1444 |
+
"text/plain": [
|
1445 |
+
"<IPython.core.display.HTML object>"
|
1446 |
+
]
|
1447 |
+
},
|
1448 |
+
"metadata": {},
|
1449 |
+
"output_type": "display_data"
|
1450 |
+
},
|
1451 |
+
{
|
1452 |
+
"name": "stderr",
|
1453 |
+
"output_type": "stream",
|
1454 |
+
"text": [
|
1455 |
+
"[I 2024-03-27 11:15:33,685] Trial 8 finished with value: 0.46398061315082145 and parameters: {'learning_rate': 4.810569035434538e-05, 'num_train_epochs': 2, 'seed': 11, 'per_device_train_batch_size': 8}. Best is trial 3 with value: 0.5025517897100551.\n",
|
1456 |
+
"/home/ubuntu/.local/lib/python3.10/site-packages/accelerate/accelerator.py:432: FutureWarning: Passing the following arguments to `Accelerator` is deprecated and will be removed in version 1.0 of Accelerate: dict_keys(['dispatch_batches', 'split_batches', 'even_batches', 'use_seedable_sampler']). Please pass an `accelerate.DataLoaderConfiguration` instead: \n",
|
1457 |
+
"dataloader_config = DataLoaderConfiguration(dispatch_batches=None, split_batches=False, even_batches=True, use_seedable_sampler=True)\n",
|
1458 |
+
" warnings.warn(\n",
|
1459 |
+
"Some weights of DistilBertForSequenceClassification were not initialized from the model checkpoint at distilbert-base-uncased and are newly initialized: ['classifier.bias', 'classifier.weight', 'pre_classifier.bias', 'pre_classifier.weight']\n",
|
1460 |
+
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
|
1461 |
+
]
|
1462 |
+
},
|
1463 |
+
{
|
1464 |
+
"data": {
|
1465 |
+
"text/html": [
|
1466 |
+
"\n",
|
1467 |
+
" <div>\n",
|
1468 |
+
" \n",
|
1469 |
+
" <progress value='268' max='804' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
1470 |
+
" [268/804 00:09 < 00:20, 26.67 it/s, Epoch 1/3]\n",
|
1471 |
+
" </div>\n",
|
1472 |
+
" <table border=\"1\" class=\"dataframe\">\n",
|
1473 |
+
" <thead>\n",
|
1474 |
+
" <tr style=\"text-align: left;\">\n",
|
1475 |
+
" <th>Epoch</th>\n",
|
1476 |
+
" <th>Training Loss</th>\n",
|
1477 |
+
" <th>Validation Loss</th>\n",
|
1478 |
+
" <th>Matthews Correlation</th>\n",
|
1479 |
+
" </tr>\n",
|
1480 |
+
" </thead>\n",
|
1481 |
+
" <tbody>\n",
|
1482 |
+
" <tr>\n",
|
1483 |
+
" <td>1</td>\n",
|
1484 |
+
" <td>No log</td>\n",
|
1485 |
+
" <td>0.571560</td>\n",
|
1486 |
+
" <td>0.046356</td>\n",
|
1487 |
+
" </tr>\n",
|
1488 |
+
" </tbody>\n",
|
1489 |
+
"</table><p>"
|
1490 |
+
],
|
1491 |
+
"text/plain": [
|
1492 |
+
"<IPython.core.display.HTML object>"
|
1493 |
+
]
|
1494 |
+
},
|
1495 |
+
"metadata": {},
|
1496 |
+
"output_type": "display_data"
|
1497 |
+
},
|
1498 |
+
{
|
1499 |
+
"name": "stderr",
|
1500 |
+
"output_type": "stream",
|
1501 |
+
"text": [
|
1502 |
+
"[I 2024-03-27 11:15:44,118] Trial 9 pruned. \n"
|
1503 |
+
]
|
1504 |
+
}
|
1505 |
+
],
|
1506 |
+
"source": [
|
1507 |
+
"best_run = trainer.hyperparameter_search(n_trials=10, direction=\"maximize\")"
|
1508 |
+
]
|
1509 |
+
},
|
1510 |
+
{
|
1511 |
+
"cell_type": "code",
|
1512 |
+
"execution_count": 27,
|
1513 |
+
"id": "ce0ebef8-3a96-4401-a62b-1771b2a68b24",
|
1514 |
+
"metadata": {},
|
1515 |
+
"outputs": [
|
1516 |
+
{
|
1517 |
+
"data": {
|
1518 |
+
"text/plain": [
|
1519 |
+
"BestRun(run_id='3', objective=0.5025517897100551, hyperparameters={'learning_rate': 9.440074279431108e-05, 'num_train_epochs': 2, 'seed': 17, 'per_device_train_batch_size': 32}, run_summary=None)"
|
1520 |
+
]
|
1521 |
+
},
|
1522 |
+
"execution_count": 27,
|
1523 |
+
"metadata": {},
|
1524 |
+
"output_type": "execute_result"
|
1525 |
+
}
|
1526 |
+
],
|
1527 |
+
"source": [
|
1528 |
+
"best_run"
|
1529 |
+
]
|
1530 |
+
},
|
1531 |
+
{
|
1532 |
+
"cell_type": "code",
|
1533 |
+
"execution_count": 28,
|
1534 |
+
"id": "efba4c29-56d3-459f-836e-ead6ec4c179f",
|
1535 |
+
"metadata": {},
|
1536 |
+
"outputs": [
|
1537 |
+
{
|
1538 |
+
"name": "stderr",
|
1539 |
+
"output_type": "stream",
|
1540 |
+
"text": [
|
1541 |
+
"Some weights of DistilBertForSequenceClassification were not initialized from the model checkpoint at distilbert-base-uncased and are newly initialized: ['classifier.bias', 'classifier.weight', 'pre_classifier.bias', 'pre_classifier.weight']\n",
|
1542 |
+
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
|
1543 |
+
]
|
1544 |
+
},
|
1545 |
+
{
|
1546 |
+
"data": {
|
1547 |
+
"text/html": [
|
1548 |
+
"\n",
|
1549 |
+
" <div>\n",
|
1550 |
+
" \n",
|
1551 |
+
" <progress value='536' max='536' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
1552 |
+
" [536/536 00:21, Epoch 2/2]\n",
|
1553 |
+
" </div>\n",
|
1554 |
+
" <table border=\"1\" class=\"dataframe\">\n",
|
1555 |
+
" <thead>\n",
|
1556 |
+
" <tr style=\"text-align: left;\">\n",
|
1557 |
+
" <th>Epoch</th>\n",
|
1558 |
+
" <th>Training Loss</th>\n",
|
1559 |
+
" <th>Validation Loss</th>\n",
|
1560 |
+
" <th>Matthews Correlation</th>\n",
|
1561 |
+
" </tr>\n",
|
1562 |
+
" </thead>\n",
|
1563 |
+
" <tbody>\n",
|
1564 |
+
" <tr>\n",
|
1565 |
+
" <td>1</td>\n",
|
1566 |
+
" <td>No log</td>\n",
|
1567 |
+
" <td>0.479286</td>\n",
|
1568 |
+
" <td>0.436850</td>\n",
|
1569 |
+
" </tr>\n",
|
1570 |
+
" <tr>\n",
|
1571 |
+
" <td>2</td>\n",
|
1572 |
+
" <td>0.414800</td>\n",
|
1573 |
+
" <td>0.520329</td>\n",
|
1574 |
+
" <td>0.502552</td>\n",
|
1575 |
+
" </tr>\n",
|
1576 |
+
" </tbody>\n",
|
1577 |
+
"</table><p>"
|
1578 |
+
],
|
1579 |
+
"text/plain": [
|
1580 |
+
"<IPython.core.display.HTML object>"
|
1581 |
+
]
|
1582 |
+
},
|
1583 |
+
"metadata": {},
|
1584 |
+
"output_type": "display_data"
|
1585 |
+
},
|
1586 |
+
{
|
1587 |
+
"data": {
|
1588 |
+
"text/plain": [
|
1589 |
+
"TrainOutput(global_step=536, training_loss=0.40565217964684785, metrics={'train_runtime': 21.0572, 'train_samples_per_second': 812.168, 'train_steps_per_second': 25.454, 'total_flos': 153655196855484.0, 'train_loss': 0.40565217964684785, 'epoch': 2.0})"
|
1590 |
+
]
|
1591 |
+
},
|
1592 |
+
"execution_count": 28,
|
1593 |
+
"metadata": {},
|
1594 |
+
"output_type": "execute_result"
|
1595 |
+
}
|
1596 |
+
],
|
1597 |
+
"source": [
|
1598 |
+
"for n,v in best_run.hyperparameters.items():\n",
|
1599 |
+
" setattr(trainer.args, n, v)\n",
|
1600 |
+
"\n",
|
1601 |
+
"trainer.train()"
|
1602 |
+
]
|
1603 |
+
},
|
1604 |
+
{
|
1605 |
+
"cell_type": "code",
|
1606 |
+
"execution_count": null,
|
1607 |
+
"id": "06baa2a0-6d79-4e2e-ad8e-d67ec1ed8c57",
|
1608 |
+
"metadata": {},
|
1609 |
+
"outputs": [],
|
1610 |
+
"source": []
|
1611 |
+
}
|
1612 |
+
],
|
1613 |
+
"metadata": {
|
1614 |
+
"kernelspec": {
|
1615 |
+
"display_name": "Python 3 (ipykernel)",
|
1616 |
+
"language": "python",
|
1617 |
+
"name": "python3"
|
1618 |
+
},
|
1619 |
+
"language_info": {
|
1620 |
+
"codemirror_mode": {
|
1621 |
+
"name": "ipython",
|
1622 |
+
"version": 3
|
1623 |
+
},
|
1624 |
+
"file_extension": ".py",
|
1625 |
+
"mimetype": "text/x-python",
|
1626 |
+
"name": "python",
|
1627 |
+
"nbconvert_exporter": "python",
|
1628 |
+
"pygments_lexer": "ipython3",
|
1629 |
+
"version": "3.10.12"
|
1630 |
+
}
|
1631 |
+
},
|
1632 |
+
"nbformat": 4,
|
1633 |
+
"nbformat_minor": 5
|
1634 |
+
}
|