--- license: mit base_model: openai-community/roberta-large-openai-detector tags: - generated_from_trainer metrics: - accuracy - recall - precision - f1 model-index: - name: openai-roberta-large-AI-detection results: [] --- # openai-roberta-large-AI-detection This model is a fine-tuned version of [openai-community/roberta-large-openai-detector](https://huggingface.co/openai-community/roberta-large-openai-detector) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5761 - Accuracy: 0.7308 - Recall: 0.7513 - Precision: 0.7595 - F1: 0.7554 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | Precision | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.6973 | 1.0 | 197 | 0.5936 | 0.7071 | 0.9652 | 0.6612 | 0.7848 | | 0.658 | 2.0 | 394 | 0.5761 | 0.7308 | 0.7513 | 0.7595 | 0.7554 | | 0.4746 | 3.0 | 591 | 0.6044 | 0.7071 | 0.8690 | 0.6857 | 0.7665 | | 0.3514 | 4.0 | 788 | 0.7278 | 0.7293 | 0.8636 | 0.7099 | 0.7793 | | 0.2263 | 5.0 | 985 | 1.2186 | 0.7071 | 0.8636 | 0.6872 | 0.7654 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2