--- license: mit base_model: roberta-base tags: - generated_from_trainer metrics: - accuracy - recall - precision - f1 model-index: - name: roberta-large-AI-detection results: [] --- # roberta-large-AI-detection This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5246 - Accuracy: 0.7574 - Recall: 0.8155 - Precision: 0.7625 - F1: 0.7881 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | Precision | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.6903 | 1.0 | 197 | 0.6773 | 0.5533 | 1.0 | 0.5533 | 0.7124 | | 0.5917 | 2.0 | 394 | 0.6918 | 0.7189 | 0.8503 | 0.7035 | 0.7700 | | 0.6437 | 3.0 | 591 | 0.5689 | 0.7485 | 0.8209 | 0.7488 | 0.7832 | | 0.5568 | 4.0 | 788 | 0.5246 | 0.7574 | 0.8155 | 0.7625 | 0.7881 | | 0.6706 | 5.0 | 985 | 0.6416 | 0.7870 | 0.8690 | 0.7738 | 0.8186 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2