|
import os |
|
import numpy as np |
|
import tensorflow as tf |
|
from tensorflow.keras import layers, Model |
|
import argparse |
|
from datetime import datetime |
|
|
|
|
|
def create_simple_model(instance_shape, max_length): |
|
inputs = layers.Input(shape=(max_length, instance_shape[-1]), name="bag_input") |
|
flatten = layers.TimeDistributed(layers.Flatten())(inputs) |
|
dense_1 = layers.TimeDistributed(layers.Dense(256, activation="relu"))(flatten) |
|
dropout_1 = layers.TimeDistributed(layers.Dropout(0.5))(dense_1) |
|
dense_2 = layers.TimeDistributed(layers.Dense(64, activation="relu"))(dropout_1) |
|
dropout_2 = layers.TimeDistributed(layers.Dropout(0.5))(dense_2) |
|
aggregated = layers.GlobalAveragePooling1D()(dropout_2) |
|
norm_1 = layers.LayerNormalization()(aggregated) |
|
output = layers.Dense(1, activation="sigmoid")(norm_1) |
|
return Model(inputs, output) |
|
|
|
|
|
def create_simple_model2(instance_shape, max_length, num_heads=4, key_dim=64): |
|
inputs = layers.Input(shape=(max_length, instance_shape[-1]), name="bag_input") |
|
flatten = layers.TimeDistributed(layers.Flatten())(inputs) |
|
dense_1 = layers.TimeDistributed(layers.Dense(256, activation="relu"))(flatten) |
|
dropout_1 = layers.TimeDistributed(layers.Dropout(0.5))(dense_1) |
|
dense_2 = layers.TimeDistributed(layers.Dense(64, activation="relu"))(dropout_1) |
|
dropout_2 = layers.TimeDistributed(layers.Dropout(0.5))(dense_2) |
|
attention_output, attention_scores = layers.MultiHeadAttention( |
|
num_heads=num_heads, |
|
key_dim=key_dim, |
|
value_dim=64, |
|
dropout=0.1, |
|
use_bias=True |
|
)(query=dropout_2, value=dropout_2, key=dropout_2, return_attention_scores=True) |
|
aggregated = layers.GlobalAveragePooling1D()(attention_output) |
|
norm_1 = layers.LayerNormalization()(aggregated) |
|
output = layers.Dense(1, activation="sigmoid")(norm_1) |
|
return Model(inputs, output) |
|
|
|
|
|
def compute_class_weights(labels): |
|
negative_count = len(np.where(labels == 0)[0]) |
|
positive_count = len(np.where(labels == 1)[0]) |
|
total_count = negative_count + positive_count |
|
return {0: (1 / negative_count) * (total_count / 2), 1: (1 / positive_count) * (total_count / 2)} |
|
|
|
|
|
def data_generator(data, labels, batch_size=1): |
|
class_weights = compute_class_weights(labels) |
|
while True: |
|
for i in range(0, len(data), batch_size): |
|
batch_data = np.array(data[i:i + batch_size], dtype=np.float32) |
|
batch_labels = np.array(labels[i:i + batch_size], dtype=np.float32) |
|
batch_weights = np.array([class_weights[int(label)] for label in batch_labels], dtype=np.float32) |
|
yield batch_data, batch_labels, batch_weights |
|
|
|
|
|
def lr_scheduler(epoch, lr): |
|
decay_rate = 0.1 |
|
decay_step = 10 |
|
if epoch % decay_step == 0 and epoch: |
|
return lr * decay_rate |
|
return lr |
|
|
|
|
|
def train(train_data, train_labels, val_data, val_labels, model, save_dir): |
|
model_path = os.path.join(save_dir, "risk_classifier_model.h5") |
|
model_checkpoint = tf.keras.callbacks.ModelCheckpoint(model_path, monitor="val_loss", verbose=1, mode="min", save_best_only=True, save_weights_only=False) |
|
early_stopping = tf.keras.callbacks.EarlyStopping(monitor="val_loss", patience=10, mode="min") |
|
lr_callback = tf.keras.callbacks.LearningRateScheduler(lr_scheduler) |
|
model.compile(optimizer="adam", loss="binary_crossentropy", metrics=["accuracy", "AUC"]) |
|
train_gen = data_generator(train_data, train_labels) |
|
val_gen = data_generator(val_data, val_labels) |
|
model.fit(train_gen, steps_per_epoch=len(train_data), validation_data=val_gen, validation_steps=len(val_data), epochs=50, batch_size=1, callbacks=[early_stopping, model_checkpoint, lr_callback], verbose=1) |
|
return model |
|
|
|
if __name__ == "__main__": |
|
|
|
parser = argparse.ArgumentParser(description='Train a multiple instance learning classifier on risk data.') |
|
parser.add_argument('--data_file', type=str, required=True, help='Path to the saved .npz file with training and validation data.') |
|
parser.add_argument('--save_dir', type=str, default='./model_save/', help='Directory to save the model.') |
|
parser.add_argument('--epochs', type=int, default=50, help='Number of training epochs.') |
|
parser.add_argument('--model_type', type=str, default='model1', choices=['model1', 'model2'], help='Type of model to use: model1 (default) or model2.') |
|
|
|
args = parser.parse_args() |
|
|
|
if not os.path.exists(args.save_dir): |
|
os.makedirs(args.save_dir) |
|
|
|
|
|
data = np.load(args.data_file) |
|
train_X, train_Y = data['train_X'], data['train_Y'] |
|
validate_X, validate_Y = data['validate_X'], data['validate_Y'] |
|
|
|
|
|
instance_shape = (train_X.shape[-1],) |
|
max_length = train_X.shape[1] |
|
|
|
if args.model_type == 'model2': |
|
model = create_simple_model2(instance_shape, max_length) |
|
else: |
|
model = create_simple_model(instance_shape, max_length) |
|
|
|
|
|
trained_model = train(train_X, train_Y, validate_X, validate_Y, model, args.save_dir) |
|
|
|
|
|
print(f"Model saved successfully to {os.path.join(args.save_dir, 'risk_classifier_model.h5')}") |
|
|