import torch import torch.nn as nn from torch.utils.data import Dataset class SimpleNN(nn.Module): def __init__(self): super(SimpleNN, self).__init__() self.fc1 = nn.Linear(512, 512) self.fc2 = nn.Linear(512, 256) self.fc3 = nn.Linear(256, 1) def forward(self, x): x = torch.relu(self.fc1(x)) x = torch.relu(self.fc2(x)) x = torch.sigmoid(self.fc3(x)) return x class CustomDataset(Dataset): <<<<<<< HEAD def __init__(self, X, Y): ======= def __init__(self,X,Y): >>>>>>> docker self.X = torch.tensor(X, dtype=torch.float32) self.Y = torch.tensor(Y, dtype=torch.float32) def __len__(self): return len(self.X) def __getitem__(self, index): return self.X[index], self.Y[index]