import os import numpy as np import tensorflow as tf from tensorflow.keras import layers, Model from sklearn.metrics import roc_auc_score, f1_score, accuracy_score, precision_score, recall_score import argparse import json import pandas as pd # Define the function to create the multiple instance learning (MIL) model def create_simple_model(instance_shape, max_length): inputs = layers.Input(shape=(max_length, instance_shape[-1]), name="bag_input") flatten = layers.TimeDistributed(layers.Flatten())(inputs) dense_1 = layers.TimeDistributed(layers.Dense(256, activation="relu"))(flatten) dropout_1 = layers.TimeDistributed(layers.Dropout(0.5))(dense_1) dense_2 = layers.TimeDistributed(layers.Dense(64, activation="relu"))(dropout_1) dropout_2 = layers.TimeDistributed(layers.Dropout(0.5))(dense_2) aggregated = layers.GlobalAveragePooling1D()(dropout_2) norm_1 = layers.LayerNormalization()(aggregated) output = layers.Dense(1, activation="sigmoid")(norm_1) return Model(inputs, output) # Function to compute class weights def compute_class_weights(labels): negative_count = len(np.where(labels == 0)[0]) positive_count = len(np.where(labels == 1)[0]) total_count = negative_count + positive_count return {0: (1 / negative_count) * (total_count / 2), 1: (1 / positive_count) * (total_count / 2)} # Function to generate batches of data def data_generator(data, labels, batch_size=1): class_weights = compute_class_weights(labels) while True: for i in range(0, len(data), batch_size): batch_data = np.array(data[i:i + batch_size], dtype=np.float32) batch_labels = np.array(labels[i:i + batch_size], dtype=np.float32) batch_weights = np.array([class_weights[int(label)] for label in batch_labels], dtype=np.float32) yield batch_data, batch_labels, batch_weights # Learning rate scheduler def lr_scheduler(epoch, lr): decay_rate = 0.1 decay_step = 10 if epoch % decay_step == 0 and epoch: return lr * decay_rate return lr # Function to train the model def train(train_data, train_labels, val_data, val_labels, model, save_dir): model_path = os.path.join(save_dir, "best_model.h5") model_checkpoint = tf.keras.callbacks.ModelCheckpoint(model_path, monitor="val_loss", verbose=1, mode="min", save_best_only=True, save_weights_only=False) early_stopping = tf.keras.callbacks.EarlyStopping(monitor="val_loss", patience=10, mode="min") lr_callback = tf.keras.callbacks.LearningRateScheduler(lr_scheduler) model.compile(optimizer="adam", loss="binary_crossentropy", metrics=["accuracy", "AUC"]) train_gen = data_generator(train_data, train_labels) val_gen = data_generator(val_data, val_labels) model.fit(train_gen, steps_per_epoch=len(train_data), validation_data=val_gen, validation_steps=len(val_data), epochs=50, batch_size=1, callbacks=[early_stopping, model_checkpoint, lr_callback], verbose=1) return model # Function to compute additional metrics like AUC, Precision, Recall, and F1 Score def compute_additional_metrics(X, Y, model): predictions = model.predict(X).flatten() predictions_binary = (predictions > 0.5).astype(int) # Convert probabilities to class labels (0 or 1) auc = roc_auc_score(Y, predictions) precision = precision_score(Y, predictions_binary) recall = recall_score(Y, predictions_binary) f1 = f1_score(Y, predictions_binary) return auc, precision, recall, f1, predictions # Function to evaluate the model on a given dataset def evaluate_dataset(model, X, Y, dataset_name, save_dir): eval_metrics = model.evaluate(X, Y, verbose=0) auc, precision, recall, f1, predictions = compute_additional_metrics(X, Y, model) metrics = { 'loss': eval_metrics[0], 'accuracy': eval_metrics[1], 'auc': auc, 'precision': precision, 'recall': recall, 'f1_score': f1 } # Save the predictions for each sample np.savez_compressed(os.path.join(save_dir, f'{dataset_name}_predictions.npz'), predictions=predictions, labels=Y) return metrics # Function to evaluate the model on train, validate, and test datasets def evaluate_all_datasets(model, train_X, train_Y, validate_X, validate_Y, test_X, test_Y, save_dir): train_metrics = evaluate_dataset(model, train_X, train_Y, "train", save_dir) validate_metrics = evaluate_dataset(model, validate_X, validate_Y, "validate", save_dir) test_metrics = evaluate_dataset(model, test_X, test_Y, "test", save_dir) metrics = { 'train': train_metrics, 'validate': validate_metrics, 'test': test_metrics } # Display the metrics in a tabular format metrics_df = pd.DataFrame(metrics).T print(metrics_df.to_string()) # Save metrics to a JSON file with open(os.path.join(save_dir, 'evaluation_metrics.json'), 'w') as f: json.dump(metrics, f, indent=4) print("Evaluation metrics saved to evaluation_metrics.json") return metrics if __name__ == "__main__": # Command line arguments parser = argparse.ArgumentParser(description='Train a multiple instance learning classifier on risk data.') parser.add_argument('--data_file', type=str, required=True, help='Path to the saved .npz file with training and validation data.') parser.add_argument('--save_dir', type=str, default='./model_save/', help='Directory to save the model and evaluation metrics.') parser.add_argument('--epochs', type=int, default=50, help='Number of training epochs.') args = parser.parse_args() if not os.path.exists(args.save_dir): os.makedirs(args.save_dir) # Load the preprocessed data data = np.load(args.data_file) train_X, train_Y = data['train_X'], data['train_Y'] validate_X, validate_Y = data['validate_X'], data['validate_Y'] test_X, test_Y = data['test_X'], data['test_Y'] # Create the model instance_shape = (train_X.shape[-1],) max_length = train_X.shape[1] model = create_simple_model(instance_shape, max_length) # Train the model trained_model = train(train_X, train_Y, validate_X, validate_Y, model, args.save_dir) # Save the final model after training final_model_path = os.path.join(args.save_dir, "risk_classifier_model.h5") trained_model.save(final_model_path) print(f"Model saved successfully to {final_model_path}") # Evaluate the model metrics = evaluate_all_datasets(trained_model, train_X, train_Y, validate_X, validate_Y, test_X, test_Y, args.save_dir)