import os import numpy as np import tensorflow as tf from tensorflow.keras import layers, Model import argparse from datetime import datetime # Define the function to create the first model def create_simple_model(instance_shape, max_length): inputs = layers.Input(shape=(max_length, instance_shape[-1]), name="bag_input") flatten = layers.TimeDistributed(layers.Flatten())(inputs) dense_1 = layers.TimeDistributed(layers.Dense(256, activation="relu"))(flatten) dropout_1 = layers.TimeDistributed(layers.Dropout(0.5))(dense_1) dense_2 = layers.TimeDistributed(layers.Dense(64, activation="relu"))(dropout_1) dropout_2 = layers.TimeDistributed(layers.Dropout(0.5))(dense_2) aggregated = layers.GlobalAveragePooling1D()(dropout_2) norm_1 = layers.LayerNormalization()(aggregated) output = layers.Dense(1, activation="sigmoid")(norm_1) return Model(inputs, output) # Define the function to create the second model with attention def create_simple_model2(instance_shape, max_length, num_heads=4, key_dim=64): inputs = layers.Input(shape=(max_length, instance_shape[-1]), name="bag_input") flatten = layers.TimeDistributed(layers.Flatten())(inputs) dense_1 = layers.TimeDistributed(layers.Dense(256, activation="relu"))(flatten) dropout_1 = layers.TimeDistributed(layers.Dropout(0.5))(dense_1) dense_2 = layers.TimeDistributed(layers.Dense(64, activation="relu"))(dropout_1) dropout_2 = layers.TimeDistributed(layers.Dropout(0.5))(dense_2) attention_output, attention_scores = layers.MultiHeadAttention( num_heads=num_heads, key_dim=key_dim, value_dim=64, dropout=0.1, use_bias=True )(query=dropout_2, value=dropout_2, key=dropout_2, return_attention_scores=True) aggregated = layers.GlobalAveragePooling1D()(attention_output) norm_1 = layers.LayerNormalization()(aggregated) output = layers.Dense(1, activation="sigmoid")(norm_1) return Model(inputs, output) # Function to compute class weights def compute_class_weights(labels): negative_count = len(np.where(labels == 0)[0]) positive_count = len(np.where(labels == 1)[0]) total_count = negative_count + positive_count return {0: (1 / negative_count) * (total_count / 2), 1: (1 / positive_count) * (total_count / 2)} # Function to generate batches of data def data_generator(data, labels, batch_size=1): class_weights = compute_class_weights(labels) while True: for i in range(0, len(data), batch_size): batch_data = np.array(data[i:i + batch_size], dtype=np.float32) batch_labels = np.array(labels[i:i + batch_size], dtype=np.float32) batch_weights = np.array([class_weights[int(label)] for label in batch_labels], dtype=np.float32) yield batch_data, batch_labels, batch_weights # Learning rate scheduler def lr_scheduler(epoch, lr): decay_rate = 0.1 decay_step = 10 if epoch % decay_step == 0 and epoch: return lr * decay_rate return lr # Function to train the model def train(train_data, train_labels, val_data, val_labels, model, save_dir): model_path = os.path.join(save_dir, "risk_classifier_model.h5") model_checkpoint = tf.keras.callbacks.ModelCheckpoint(model_path, monitor="val_loss", verbose=1, mode="min", save_best_only=True, save_weights_only=False) early_stopping = tf.keras.callbacks.EarlyStopping(monitor="val_loss", patience=10, mode="min") lr_callback = tf.keras.callbacks.LearningRateScheduler(lr_scheduler) model.compile(optimizer="adam", loss="binary_crossentropy", metrics=["accuracy", "AUC"]) train_gen = data_generator(train_data, train_labels) val_gen = data_generator(val_data, val_labels) model.fit(train_gen, steps_per_epoch=len(train_data), validation_data=val_gen, validation_steps=len(val_data), epochs=50, batch_size=1, callbacks=[early_stopping, model_checkpoint, lr_callback], verbose=1) return model if __name__ == "__main__": # Command line arguments parser = argparse.ArgumentParser(description='Train a multiple instance learning classifier on risk data.') parser.add_argument('--data_file', type=str, required=True, help='Path to the saved .npz file with training and validation data.') parser.add_argument('--save_dir', type=str, default='./model_save/', help='Directory to save the model.') parser.add_argument('--epochs', type=int, default=50, help='Number of training epochs.') parser.add_argument('--model_type', type=str, default='model1', choices=['model1', 'model2'], help='Type of model to use: model1 (default) or model2.') args = parser.parse_args() if not os.path.exists(args.save_dir): os.makedirs(args.save_dir) # Load the preprocessed data data = np.load(args.data_file) train_X, train_Y = data['train_X'], data['train_Y'] validate_X, validate_Y = data['validate_X'], data['validate_Y'] # Create the model based on the selected type instance_shape = (train_X.shape[-1],) max_length = train_X.shape[1] if args.model_type == 'model2': model = create_simple_model2(instance_shape, max_length) else: model = create_simple_model(instance_shape, max_length) # Train the model trained_model = train(train_X, train_Y, validate_X, validate_Y, model, args.save_dir) # Final message after training and saving the model print(f"Model saved successfully to {os.path.join(args.save_dir, 'risk_classifier_model.h5')}")