shreyas-vstackai
commited on
Commit
•
dba3bd8
1
Parent(s):
a228e7b
Update README.md
Browse files
README.md
CHANGED
@@ -2364,7 +2364,7 @@ documents = [
|
|
2364 |
|
2365 |
# Get embeddings for the legal documents
|
2366 |
doc_embeddings = client.embed(texts=documents, model='vstackai-law-1', is_query=False) # EmbeddingsObject(num_embeddings=3, embedding_dims=1536)
|
2367 |
-
doc_embeddings =
|
2368 |
|
2369 |
# Encode the query
|
2370 |
query = "How many days does the consumer have to return the product?"
|
@@ -2374,7 +2374,7 @@ query_embedding = client.embed(
|
|
2374 |
is_query=True,
|
2375 |
instruction='Represent the query for searching legal documents'
|
2376 |
) # EmbeddingsObject(num_embeddings=1, embedding_dims=1536)
|
2377 |
-
query_embedding =
|
2378 |
|
2379 |
# To check if the embeddings work, you can compute similarity between the query and documents
|
2380 |
similarities = np.dot(doc_embeddings, query_embedding.T)
|
|
|
2364 |
|
2365 |
# Get embeddings for the legal documents
|
2366 |
doc_embeddings = client.embed(texts=documents, model='vstackai-law-1', is_query=False) # EmbeddingsObject(num_embeddings=3, embedding_dims=1536)
|
2367 |
+
doc_embeddings = doc_embeddings.embeddings # (3, 1536) numpy array
|
2368 |
|
2369 |
# Encode the query
|
2370 |
query = "How many days does the consumer have to return the product?"
|
|
|
2374 |
is_query=True,
|
2375 |
instruction='Represent the query for searching legal documents'
|
2376 |
) # EmbeddingsObject(num_embeddings=1, embedding_dims=1536)
|
2377 |
+
query_embedding = query_embedding.embeddings # (1, 1536) numpy array
|
2378 |
|
2379 |
# To check if the embeddings work, you can compute similarity between the query and documents
|
2380 |
similarities = np.dot(doc_embeddings, query_embedding.T)
|