File size: 11,405 Bytes
6b8a59c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
# coding=utf-8
# Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image processor class for Phi3-V."""
from typing import List, Optional, Union
import numpy as np
from transformers.image_processing_utils import BaseImageProcessor, BatchFeature
from transformers.image_transforms import (
convert_to_rgb,
)
from transformers.image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ImageInput,
make_list_of_images,
valid_images,
)
from transformers.utils import TensorType, is_vision_available, logging
from transformers import AutoImageProcessor
logger = logging.get_logger(__name__)
if is_vision_available():
from PIL import Image
import torch
import torchvision
def padding_336(b):
width, height = b.size
tar = int(np.ceil(height / 336) * 336)
top_padding = int((tar - height)/2)
bottom_padding = tar - height - top_padding
left_padding = 0
right_padding = 0
b = torchvision.transforms.functional.pad(b, [left_padding, top_padding, right_padding, bottom_padding], fill=[255,255,255])
return b
def calc_padded_size(width, height, padding_unit=336):
target_height = int(np.ceil(height / padding_unit) * padding_unit)
top_padding = int((target_height - height) / 2)
bottom_padding = target_height - height - top_padding
left_padding = 0
right_padding = 0
padded_width = width + left_padding + right_padding
padded_height = height + top_padding + bottom_padding
return padded_width, padded_height
def HD_transform(img, hd_num=16):
width, height = img.size
trans = False
if width < height:
img = img.transpose(Image.TRANSPOSE)
trans = True
width, height = img.size
ratio = (width/ height)
scale = 1
while scale*np.ceil(scale/ratio) <= hd_num:
scale += 1
scale -= 1
new_w = int(scale * 336)
new_h = int(new_w / ratio)
img = torchvision.transforms.functional.resize(img, [new_h, new_w],)
img = padding_336(img)
width, height = img.size
if trans:
img = img.transpose(Image.TRANSPOSE)
return img
def calc_hd_transform_size(width, height, hd_num=16):
transposed = False
if width < height:
width, height = height, width
transposed = True
ratio = width / height
scale = 1
while scale * np.ceil(scale / ratio) <= hd_num:
scale += 1
scale -= 1
new_width = int(scale * 336)
new_height = int(new_width / ratio)
padded_width, padded_height = calc_padded_size(new_width, new_height)
if transposed:
padded_width, padded_height = padded_height, padded_width
return padded_width, padded_height
def pad_to_max_num_crops_tensor(images, max_crops=5):
"""
images: B x 3 x H x W, B<=max_crops
"""
B, _, H, W = images.shape
if B < max_crops:
pad = torch.zeros(max_crops - B, 3, H, W, dtype=images.dtype, device=images.device)
images = torch.cat([images, pad], dim=0)
return images
class Phi3VImageProcessor(BaseImageProcessor):
r"""
Constructs a Phi3 image processor. Based on [`CLIPImageProcessor`] with incorporation of additional techniques
for processing high resolution images as explained in the [InternLM-XComposer2-4KHD](https://arxiv.org/abs/2401.16420)
Args:
image_mean (`float` or `List[float]`, *optional*, defaults to `[0.48145466, 0.4578275, 0.40821073]`):
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
image_std (`float` or `List[float]`, *optional*, defaults to `[0.26862954, 0.26130258, 0.27577711]`):
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
Can be overridden by the `image_std` parameter in the `preprocess` method.
do_convert_rgb (`bool`, *optional*, defaults to `True`):
Whether to convert the image to RGB.
"""
model_input_names = ["pixel_values"]
def __init__(
self,
num_crops: int = 1,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
do_convert_rgb: bool = True,
**kwargs,
) -> None:
super().__init__(**kwargs)
self.num_crops = num_crops
self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD
self.do_convert_rgb = do_convert_rgb
def calc_num_image_tokens(
self,
images: ImageInput
):
""" Calculate the number of image tokens for each image.
Args:
images (`ImageInput`):
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
"""
images = make_list_of_images(images)
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
images = [image.convert('RGB') for image in images]
# (H, W, C)
elems = [HD_transform(im, hd_num = self.num_crops) for im in images]
shapes = [[im.size[1], im.size[0]] for im in elems]
num_img_tokens = [int((h//336*w//336+1)*144 + 1 + (h//336+1)*12) for h, w in shapes]
return num_img_tokens
def calc_num_image_tokens_from_image_size(self, width, height):
"""
Calculate the number of image tokens for a given image size.
Args:
width (`int`): Width of the image.
height (`int`): Height of the image.
"""
new_width, new_height = calc_hd_transform_size(width, height, hd_num=self.num_crops)
num_img_tokens = int((new_height // 336 * new_width // 336 + 1) * 144 + 1 + (new_height // 336 + 1) * 12)
return num_img_tokens
def preprocess(
self,
images: ImageInput,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
do_convert_rgb: bool = None,
return_tensors: Optional[Union[str, TensorType]] = None,
):
"""
Args:
images (`ImageInput`):
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`.
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to
`True`.
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
Whether to convert the image to RGB.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
"""
image_mean = image_mean if image_mean is not None else self.image_mean
image_std = image_std if image_std is not None else self.image_std
do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
images = make_list_of_images(images)
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
if do_convert_rgb:
images = [convert_to_rgb(image) for image in images]
image_sizes = []
img_processor = torchvision.transforms.Compose([
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize(image_mean, image_std)
])
# PIL images
# HD_transform pad images to size of multiiply of 336, 336
# convert to RGB first
images = [image.convert('RGB') for image in images]
elems = [HD_transform(im, hd_num = self.num_crops) for im in images]
# tensor transform and normalize
hd_images = [img_processor(im) for im in elems]
# create global image
global_image = [torch.nn.functional.interpolate(im.unsqueeze(0).float(), size=(336, 336), mode='bicubic',).to(im.dtype) for im in hd_images]
# [(3, h, w)], where h, w is multiple of 336
shapes = [[im.size(1), im.size(2)] for im in hd_images]
num_img_tokens = [int((h//336*w//336+1)*144 + 1 + (h//336+1)*12) for h, w in shapes]
# reshape to channel dimension -> (num_images, num_crops, 3, 336, 336)
# (1, 3, h//336, 336, w//336, 336) -> (1, h//336, w//336, 3, 336, 336) -> (h//336*w//336, 3, 336, 336)
hd_images_reshape = [im.reshape(1, 3, h//336, 336, w//336, 336).permute(0,2,4,1,3,5).reshape(-1, 3, 336, 336).contiguous() for im, (h, w) in zip(hd_images, shapes)]
# concat global image and local image
hd_images_reshape = [torch.cat([_global_image] + [_im], dim=0) for _global_image, _im in zip(global_image, hd_images_reshape)]
# pad to max_num_crops
image_transformed = [pad_to_max_num_crops_tensor(im, self.num_crops+1) for im in hd_images_reshape]
image_transformed = torch.stack(image_transformed, dim=0)
image_sizes = [torch.LongTensor(_shapes) for _shapes in shapes]
padded_images = image_transformed
image_sizes = shapes
data = {"pixel_values": padded_images,
"image_sizes": image_sizes,
"num_img_tokens": num_img_tokens
}
return BatchFeature(data=data, tensor_type=return_tensors)
AutoImageProcessor.register("Phi3VImageProcessor", Phi3VImageProcessor) |