Update PPO LunarLander-v2 trained agent
Browse files- MLP-PPO-LunarLander.zip +3 -0
- MLP-PPO-LunarLander/_stable_baselines3_version +1 -0
- MLP-PPO-LunarLander/data +94 -0
- MLP-PPO-LunarLander/policy.optimizer.pth +3 -0
- MLP-PPO-LunarLander/policy.pth +3 -0
- MLP-PPO-LunarLander/pytorch_variables.pth +3 -0
- MLP-PPO-LunarLander/system_info.txt +7 -0
- README.md +37 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
MLP-PPO-LunarLander.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5cdf82c3756b590eac739bbd73845a29a0b2effa94a7dd1245f5e8b60482d3bf
|
3 |
+
size 147424
|
MLP-PPO-LunarLander/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
MLP-PPO-LunarLander/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f5d0a1385e0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5d0a138670>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5d0a138700>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5d0a138790>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f5d0a138820>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f5d0a1388b0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5d0a138940>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f5d0a1389d0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5d0a138a60>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5d0a138af0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5d0a138b80>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f5d0a1b52a0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 1015808,
|
46 |
+
"_total_timesteps": 1000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1672841645913251414,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWV9wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGMvZGF0YTEvemhlbmh1YW5fbGl1L2FuYWNvbmRhMy9lbnZzL1JML2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGMvZGF0YTEvemhlbmh1YW5fbGl1L2FuYWNvbmRhMy9lbnZzL1JML2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJp4Bb09ujO5NtO0OZAdPDZcGyO6ppDXuAAAgD8AAIA/AEZVvVzbY7pxWiw6Xmo3tndbgDhFUDK1AACAPwAAgD/NChE8KdQSuiNIFbs845q1QkQouxSAKzoAAIA/AACAP2Y2ub24hra5bS+UOf1eIbhT3jy74oCnuAAAgD8AAIA/84Ahvo/5W7ypq6+7P8M5unytxz1Xfxc7AACAPwAAgD/NuD68uCaVuSqfjTugta04ugO2Or7PKboAAIA/AACAP1qt5z1cC3m6NZXaOg4SsDcwf4i6jgDtuQAAgD8AAIA/ABv0PFx7V7oQVwm6p1DYNfJ03TpeSh05AACAPwAAgD8NkNa9w4lIumuMmLo1VpS2AvKLO7JDsTkAAIA/AACAPwDIA71cE0267ErJutIucLavSUM7Lc/nOQAAgD8AAIA/GhEgPVybLrpgsEm6EY7aNSjB1Tr9IGo5AACAPwAAgD9mzrm8KRRLuqZ2LTnWH6k0r/jwOi5FRrgAAIA/AACAP01iaD1cq3i63u2wuz14bDhAxAc5ftf/NwAAgD8AAIA/ZkTlPQNjAT9GjBq+o1qcvlybAb184469AAAAAAAAAABmVAQ8w2k1unsl0DrHHlc2BKKwO1A58bkAAIA/AACAPy27cr5YBOo+WqHMPaC9tr7KovO9zL0ePgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVeBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIsYuiB74bY0CUhpRSlIwBbJRN6AOMAXSUR0CQOUG0NSZSdX2UKGgGaAloD0MIpfRML7H+ZECUhpRSlGgVTegDaBZHQJA5up2ll9V1fZQoaAZoCWgPQwjaqE4HMutiQJSGlFKUaBVN6ANoFkdAkDoGfGuLaXV9lChoBmgJaA9DCIBmEB/YgWNAlIaUUpRoFU3oA2gWR0CQOmR/EwWWdX2UKGgGaAloD0MIB+v/HGZXZkCUhpRSlGgVTegDaBZHQJBAQOYplSV1fZQoaAZoCWgPQwj/klSmGAlpQJSGlFKUaBVN6ANoFkdAkECdGmUGFHV9lChoBmgJaA9DCFwhrMYSfkJAlIaUUpRoFUvVaBZHQJBCyvStvGZ1fZQoaAZoCWgPQwgldQKaCFdiQJSGlFKUaBVN6ANoFkdAkES7jHXEqHV9lChoBmgJaA9DCAVrnE3HZ2JAlIaUUpRoFU3oA2gWR0CQSAVdonKGdX2UKGgGaAloD0MIF9NM9zqSYkCUhpRSlGgVTegDaBZHQJBQMXYUWVN1fZQoaAZoCWgPQwjXNO84xc5jQJSGlFKUaBVN6ANoFkdAkFDa3qiXY3V9lChoBmgJaA9DCG4VxEDXQV9AlIaUUpRoFU3oA2gWR0CQWNssg+yJdX2UKGgGaAloD0MIXKs97AVDYUCUhpRSlGgVTegDaBZHQJBx9pg1FYx1fZQoaAZoCWgPQwhi9UcYht1gQJSGlFKUaBVN6ANoFkdAkHrEPDpC8nV9lChoBmgJaA9DCNQQVfgz1mFAlIaUUpRoFU3oA2gWR0CQex6xxDLKdX2UKGgGaAloD0MIKuEJvf5iZECUhpRSlGgVTegDaBZHQJB8afpUxVR1fZQoaAZoCWgPQwiI9rGC3+5lQJSGlFKUaBVN6ANoFkdAkH1vViF0xXV9lChoBmgJaA9DCFRuopZmQGJAlIaUUpRoFU3oA2gWR0CQflP420iRdX2UKGgGaAloD0MIym37HvVIY0CUhpRSlGgVTegDaBZHQJB+sbIcR151fZQoaAZoCWgPQwj9Fp0sNaxjQJSGlFKUaBVN6ANoFkdAkH712V3Ux3V9lChoBmgJaA9DCFuVRPZBvWNAlIaUUpRoFU3oA2gWR0CQhQOKwY+CdX2UKGgGaAloD0MILlc/NklhZkCUhpRSlGgVTegDaBZHQJCFWxB3Roh1fZQoaAZoCWgPQwg+6USCKfFkQJSGlFKUaBVN6ANoFkdAkIduAI6bOXV9lChoBmgJaA9DCNb8+EsLamNAlIaUUpRoFU3oA2gWR0CQiTu2Zy+6dX2UKGgGaAloD0MIED//PfjyZECUhpRSlGgVTegDaBZHQJCMYsH0K7Z1fZQoaAZoCWgPQwgVNgNcEIhiQJSGlFKUaBVN6ANoFkdAkJTGOIZZS3V9lChoBmgJaA9DCCY49YFkXWZAlIaUUpRoFU3oA2gWR0CQlXiSJTESdX2UKGgGaAloD0MICYz1DUzxYkCUhpRSlGgVTegDaBZHQJCeZLsa86F1fZQoaAZoCWgPQwh8gVmhSGJgQJSGlFKUaBVN6ANoFkdAkJ9F2q1gIHV9lChoBmgJaA9DCGUYd4Po3GJAlIaUUpRoFU3oA2gWR0CQtxxoqTbGdX2UKGgGaAloD0MIfPDapY2CZkCUhpRSlGgVTegDaBZHQJC3fvSc9W91fZQoaAZoCWgPQwjVBieiX1pjQJSGlFKUaBVN6ANoFkdAkLjrgflp5HV9lChoBmgJaA9DCHUhVn+Ee2NAlIaUUpRoFU3oA2gWR0CQugz7/GVBdX2UKGgGaAloD0MIJHzvb1DJYkCUhpRSlGgVTegDaBZHQJC6/RiPQv91fZQoaAZoCWgPQwiOeLKbGZhkQJSGlFKUaBVN6ANoFkdAkLtmFev6j3V9lChoBmgJaA9DCCaKkLqdimdAlIaUUpRoFU3oA2gWR0CQu7K+i8FqdX2UKGgGaAloD0MIjUP9LmyBSkCUhpRSlGgVS25oFkdAkLw87uDzy3V9lChoBmgJaA9DCEt4Qq+/P2NAlIaUUpRoFU3oA2gWR0CQwhFKTSssdX2UKGgGaAloD0MInnqkwe0wZUCUhpRSlGgVTegDaBZHQJDCb8Nx2jh1fZQoaAZoCWgPQwgZ48Ps5bxnQJSGlFKUaBVN6ANoFkdAkMRqg/Tsp3V9lChoBmgJaA9DCNUHkncOu2NAlIaUUpRoFU3oA2gWR0CQxhrv9cbBdX2UKGgGaAloD0MIAizy6wdwYUCUhpRSlGgVTegDaBZHQJDJBLkCFK11fZQoaAZoCWgPQwg7N23GaSgVQJSGlFKUaBVLvmgWR0CQy+/cFhXsdX2UKGgGaAloD0MI8ZvCSgVoZECUhpRSlGgVTegDaBZHQJDQXmSyMUB1fZQoaAZoCWgPQwhS81XyMQVjQJSGlFKUaBVN6ANoFkdAkNDzAFgUlHV9lChoBmgJaA9DCHdJnBVRu15AlIaUUpRoFU3oA2gWR0CQ2Hv7m+0xdX2UKGgGaAloD0MIkX9mEJ+AZUCUhpRSlGgVTegDaBZHQJDZQd3jdYZ1fZQoaAZoCWgPQwiL3T6rzI5TQJSGlFKUaBVL6WgWR0CQ2mqUNayKdX2UKGgGaAloD0MIX+tSI/RfTUCUhpRSlGgVS6VoFkdAkO7/Pw/gSHV9lChoBmgJaA9DCA01CklmlGRAlIaUUpRoFU3oA2gWR0CQ8BFYuCf6dX2UKGgGaAloD0MIn82qz9U0aECUhpRSlGgVTegDaBZHQJDxUkC3gDR1fZQoaAZoCWgPQwhlbr4RXaFhQJSGlFKUaBVN6ANoFkdAkPJRGx2SuHV9lChoBmgJaA9DCI6PFmeMmmBAlIaUUpRoFU3oA2gWR0CQ8zXqJMxodX2UKGgGaAloD0MIylAVU2mMY0CUhpRSlGgVTegDaBZHQJDzmde6Zpl1fZQoaAZoCWgPQwjjjcwjfz5mQJSGlFKUaBVN6ANoFkdAkPPmuoxYaHV9lChoBmgJaA9DCPsGJjcKmGVAlIaUUpRoFU3oA2gWR0CQ9Go/A0sOdX2UKGgGaAloD0MIUWovou2jY0CUhpRSlGgVTegDaBZHQJD6MZ75VOt1fZQoaAZoCWgPQwhp5POKp+FjQJSGlFKUaBVN6ANoFkdAkPqTrJKaonV9lChoBmgJaA9DCN20GacholNAlIaUUpRoFUvTaBZHQJD7j5rP+n91fZQoaAZoCWgPQwg17s1vmE5lQJSGlFKUaBVN6ANoFkdAkP7L70nPV3V9lChoBmgJaA9DCANAFTduI2NAlIaUUpRoFU3oA2gWR0CRAk8Jlar4dX2UKGgGaAloD0MIMzMzMzOuYECUhpRSlGgVTegDaBZHQJEFqG0u14R1fZQoaAZoCWgPQwjLSpNS0PFmQJSGlFKUaBVN6ANoFkdAkQtzvE0iyXV9lChoBmgJaA9DCNpU3SMbw2JAlIaUUpRoFU3oA2gWR0CRFI384xUOdX2UKGgGaAloD0MIkUYFTrYHYkCUhpRSlGgVTegDaBZHQJEWx23azu51fZQoaAZoCWgPQwiGOUGbnK5jQJSGlFKUaBVN6ANoFkdAkSyOiN83M3V9lChoBmgJaA9DCN6ul6aIQ2hAlIaUUpRoFU3oA2gWR0CRLb3Ov+wUdX2UKGgGaAloD0MI3bJD/MNfZECUhpRSlGgVTegDaBZHQJEvFFlTWG11fZQoaAZoCWgPQwgtPgXAeH1nQJSGlFKUaBVN6ANoFkdAkTAf6XSjQHV9lChoBmgJaA9DCG2QSUZO/WZAlIaUUpRoFU3oA2gWR0CRMXZFG5MDdX2UKGgGaAloD0MI4gD6ff9WYUCUhpRSlGgVTegDaBZHQJExyyOaOPx1fZQoaAZoCWgPQwiT/fM04HhiQJSGlFKUaBVN6ANoFkdAkTJYvSMLnnV9lChoBmgJaA9DCNfDl4ki62VAlIaUUpRoFU3oA2gWR0CROD13MY/FdX2UKGgGaAloD0MIt0Htt/bNYECUhpRSlGgVTegDaBZHQJE4m+M6zVt1fZQoaAZoCWgPQwj2s1iK5GpSQJSGlFKUaBVLvmgWR0CRORfIjnmrdX2UKGgGaAloD0MIy9qmeNwWZUCUhpRSlGgVTegDaBZHQJE5i9cry2B1fZQoaAZoCWgPQwjjb3uCxK40QJSGlFKUaBVLw2gWR0CROhPI4lyBdX2UKGgGaAloD0MIFvcfmY7XYkCUhpRSlGgVTegDaBZHQJE8JFz+3ph1fZQoaAZoCWgPQwgD0ZMyqYpmQJSGlFKUaBVN6ANoFkdAkT7ww482aXV9lChoBmgJaA9DCCpTzEFQfWRAlIaUUpRoFU3oA2gWR0CRQdQDFId3dX2UKGgGaAloD0MI3gVKCiz+TUCUhpRSlGgVS6RoFkdAkUKP+GXXy3V9lChoBmgJaA9DCB2OrtJdyGNAlIaUUpRoFU3oA2gWR0CRRvU6xPfsdX2UKGgGaAloD0MIwK+RJIhqYkCUhpRSlGgVTegDaBZHQJFPOvcJtzl1fZQoaAZoCWgPQwjjGwqfraJnQJSGlFKUaBVN6ANoFkdAkVFkWdmQKnV9lChoBmgJaA9DCGGqmbUU9mVAlIaUUpRoFU3oA2gWR0CRZpaXKKYRdX2UKGgGaAloD0MI4Qz+frHCYkCUhpRSlGgVTegDaBZHQJFnswCbMHN1fZQoaAZoCWgPQwgR4V8EjXtiQJSGlFKUaBVN6ANoFkdAkWj7pJPIn3V9lChoBmgJaA9DCN50yw5xGmFAlIaUUpRoFU3oA2gWR0CRagLgn+hodX2UKGgGaAloD0MI0/iFV5KxYECUhpRSlGgVTegDaBZHQJFrpvKlpGp1fZQoaAZoCWgPQwjUKY9uhFdiQJSGlFKUaBVN6ANoFkdAkXMfh2nsLXV9lChoBmgJaA9DCLwhjQoctmRAlIaUUpRoFU3oA2gWR0CRc42Ifr8jdX2UKGgGaAloD0MI5bUSustaZECUhpRSlGgVTegDaBZHQJF0HovBacJ1fZQoaAZoCWgPQwjRzf5AOWdjQJSGlFKUaBVN6ANoFkdAkXSgPiDM/3V9lChoBmgJaA9DCCsTfqkfxWRAlIaUUpRoFU3oA2gWR0CRdTxW1c+rdX2UKGgGaAloD0MIyeTUzjC1Y0CUhpRSlGgVTegDaBZHQJF6zmaH9FZ1fZQoaAZoCWgPQwhaYmU0cr5kQJSGlFKUaBVN6ANoFkdAkX4GtU4rBnV9lChoBmgJaA9DCKkT0ERYe2dAlIaUUpRoFU3oA2gWR0CRftJXyRSxdX2UKGgGaAloD0MINQnekMYmYECUhpRSlGgVTegDaBZHQJGDpzDGcWl1fZQoaAZoCWgPQwgVHjS77upfQJSGlFKUaBVN6ANoFkdAkY03FtKqXHV9lChoBmgJaA9DCDFD44mgq2BAlIaUUpRoFU3oA2gWR0CRj64Ajps5dWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 248,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWV9wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGMvZGF0YTEvemhlbmh1YW5fbGl1L2FuYWNvbmRhMy9lbnZzL1JML2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGMvZGF0YTEvemhlbmh1YW5fbGl1L2FuYWNvbmRhMy9lbnZzL1JML2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
MLP-PPO-LunarLander/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6aba4c546897b4d73efb1588a3720091e1e0bec71038e5f0c03a0a3aac048f9e
|
3 |
+
size 87993
|
MLP-PPO-LunarLander/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6954a42b6584961803c581fc57622bf5223bb8786c45ce23c86221f166e106d1
|
3 |
+
size 43201
|
MLP-PPO-LunarLander/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
MLP-PPO-LunarLander/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.13.0-41-generic-x86_64-with-glibc2.17 #46~20.04.1-Ubuntu SMP Wed Apr 20 13:16:21 UTC 2022
|
2 |
+
Python: 3.8.13
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.12.1
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.23.1
|
7 |
+
Gym: 0.21.0
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 246.48 +/- 37.48
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5d0a1385e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5d0a138670>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5d0a138700>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5d0a138790>", "_build": "<function ActorCriticPolicy._build at 0x7f5d0a138820>", "forward": "<function ActorCriticPolicy.forward at 0x7f5d0a1388b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5d0a138940>", "_predict": "<function ActorCriticPolicy._predict at 0x7f5d0a1389d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5d0a138a60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5d0a138af0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5d0a138b80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f5d0a1b52a0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1672841645913251414, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV9wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGMvZGF0YTEvemhlbmh1YW5fbGl1L2FuYWNvbmRhMy9lbnZzL1JML2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGMvZGF0YTEvemhlbmh1YW5fbGl1L2FuYWNvbmRhMy9lbnZzL1JML2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJp4Bb09ujO5NtO0OZAdPDZcGyO6ppDXuAAAgD8AAIA/AEZVvVzbY7pxWiw6Xmo3tndbgDhFUDK1AACAPwAAgD/NChE8KdQSuiNIFbs845q1QkQouxSAKzoAAIA/AACAP2Y2ub24hra5bS+UOf1eIbhT3jy74oCnuAAAgD8AAIA/84Ahvo/5W7ypq6+7P8M5unytxz1Xfxc7AACAPwAAgD/NuD68uCaVuSqfjTugta04ugO2Or7PKboAAIA/AACAP1qt5z1cC3m6NZXaOg4SsDcwf4i6jgDtuQAAgD8AAIA/ABv0PFx7V7oQVwm6p1DYNfJ03TpeSh05AACAPwAAgD8NkNa9w4lIumuMmLo1VpS2AvKLO7JDsTkAAIA/AACAPwDIA71cE0267ErJutIucLavSUM7Lc/nOQAAgD8AAIA/GhEgPVybLrpgsEm6EY7aNSjB1Tr9IGo5AACAPwAAgD9mzrm8KRRLuqZ2LTnWH6k0r/jwOi5FRrgAAIA/AACAP01iaD1cq3i63u2wuz14bDhAxAc5ftf/NwAAgD8AAIA/ZkTlPQNjAT9GjBq+o1qcvlybAb184469AAAAAAAAAABmVAQ8w2k1unsl0DrHHlc2BKKwO1A58bkAAIA/AACAPy27cr5YBOo+WqHMPaC9tr7KovO9zL0ePgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVeBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIsYuiB74bY0CUhpRSlIwBbJRN6AOMAXSUR0CQOUG0NSZSdX2UKGgGaAloD0MIpfRML7H+ZECUhpRSlGgVTegDaBZHQJA5up2ll9V1fZQoaAZoCWgPQwjaqE4HMutiQJSGlFKUaBVN6ANoFkdAkDoGfGuLaXV9lChoBmgJaA9DCIBmEB/YgWNAlIaUUpRoFU3oA2gWR0CQOmR/EwWWdX2UKGgGaAloD0MIB+v/HGZXZkCUhpRSlGgVTegDaBZHQJBAQOYplSV1fZQoaAZoCWgPQwj/klSmGAlpQJSGlFKUaBVN6ANoFkdAkECdGmUGFHV9lChoBmgJaA9DCFwhrMYSfkJAlIaUUpRoFUvVaBZHQJBCyvStvGZ1fZQoaAZoCWgPQwgldQKaCFdiQJSGlFKUaBVN6ANoFkdAkES7jHXEqHV9lChoBmgJaA9DCAVrnE3HZ2JAlIaUUpRoFU3oA2gWR0CQSAVdonKGdX2UKGgGaAloD0MIF9NM9zqSYkCUhpRSlGgVTegDaBZHQJBQMXYUWVN1fZQoaAZoCWgPQwjXNO84xc5jQJSGlFKUaBVN6ANoFkdAkFDa3qiXY3V9lChoBmgJaA9DCG4VxEDXQV9AlIaUUpRoFU3oA2gWR0CQWNssg+yJdX2UKGgGaAloD0MIXKs97AVDYUCUhpRSlGgVTegDaBZHQJBx9pg1FYx1fZQoaAZoCWgPQwhi9UcYht1gQJSGlFKUaBVN6ANoFkdAkHrEPDpC8nV9lChoBmgJaA9DCNQQVfgz1mFAlIaUUpRoFU3oA2gWR0CQex6xxDLKdX2UKGgGaAloD0MIKuEJvf5iZECUhpRSlGgVTegDaBZHQJB8afpUxVR1fZQoaAZoCWgPQwiI9rGC3+5lQJSGlFKUaBVN6ANoFkdAkH1vViF0xXV9lChoBmgJaA9DCFRuopZmQGJAlIaUUpRoFU3oA2gWR0CQflP420iRdX2UKGgGaAloD0MIym37HvVIY0CUhpRSlGgVTegDaBZHQJB+sbIcR151fZQoaAZoCWgPQwj9Fp0sNaxjQJSGlFKUaBVN6ANoFkdAkH712V3Ux3V9lChoBmgJaA9DCFuVRPZBvWNAlIaUUpRoFU3oA2gWR0CQhQOKwY+CdX2UKGgGaAloD0MILlc/NklhZkCUhpRSlGgVTegDaBZHQJCFWxB3Roh1fZQoaAZoCWgPQwg+6USCKfFkQJSGlFKUaBVN6ANoFkdAkIduAI6bOXV9lChoBmgJaA9DCNb8+EsLamNAlIaUUpRoFU3oA2gWR0CQiTu2Zy+6dX2UKGgGaAloD0MIED//PfjyZECUhpRSlGgVTegDaBZHQJCMYsH0K7Z1fZQoaAZoCWgPQwgVNgNcEIhiQJSGlFKUaBVN6ANoFkdAkJTGOIZZS3V9lChoBmgJaA9DCCY49YFkXWZAlIaUUpRoFU3oA2gWR0CQlXiSJTESdX2UKGgGaAloD0MICYz1DUzxYkCUhpRSlGgVTegDaBZHQJCeZLsa86F1fZQoaAZoCWgPQwh8gVmhSGJgQJSGlFKUaBVN6ANoFkdAkJ9F2q1gIHV9lChoBmgJaA9DCGUYd4Po3GJAlIaUUpRoFU3oA2gWR0CQtxxoqTbGdX2UKGgGaAloD0MIfPDapY2CZkCUhpRSlGgVTegDaBZHQJC3fvSc9W91fZQoaAZoCWgPQwjVBieiX1pjQJSGlFKUaBVN6ANoFkdAkLjrgflp5HV9lChoBmgJaA9DCHUhVn+Ee2NAlIaUUpRoFU3oA2gWR0CQugz7/GVBdX2UKGgGaAloD0MIJHzvb1DJYkCUhpRSlGgVTegDaBZHQJC6/RiPQv91fZQoaAZoCWgPQwiOeLKbGZhkQJSGlFKUaBVN6ANoFkdAkLtmFev6j3V9lChoBmgJaA9DCCaKkLqdimdAlIaUUpRoFU3oA2gWR0CQu7K+i8FqdX2UKGgGaAloD0MIjUP9LmyBSkCUhpRSlGgVS25oFkdAkLw87uDzy3V9lChoBmgJaA9DCEt4Qq+/P2NAlIaUUpRoFU3oA2gWR0CQwhFKTSssdX2UKGgGaAloD0MInnqkwe0wZUCUhpRSlGgVTegDaBZHQJDCb8Nx2jh1fZQoaAZoCWgPQwgZ48Ps5bxnQJSGlFKUaBVN6ANoFkdAkMRqg/Tsp3V9lChoBmgJaA9DCNUHkncOu2NAlIaUUpRoFU3oA2gWR0CQxhrv9cbBdX2UKGgGaAloD0MIAizy6wdwYUCUhpRSlGgVTegDaBZHQJDJBLkCFK11fZQoaAZoCWgPQwg7N23GaSgVQJSGlFKUaBVLvmgWR0CQy+/cFhXsdX2UKGgGaAloD0MI8ZvCSgVoZECUhpRSlGgVTegDaBZHQJDQXmSyMUB1fZQoaAZoCWgPQwhS81XyMQVjQJSGlFKUaBVN6ANoFkdAkNDzAFgUlHV9lChoBmgJaA9DCHdJnBVRu15AlIaUUpRoFU3oA2gWR0CQ2Hv7m+0xdX2UKGgGaAloD0MIkX9mEJ+AZUCUhpRSlGgVTegDaBZHQJDZQd3jdYZ1fZQoaAZoCWgPQwiL3T6rzI5TQJSGlFKUaBVL6WgWR0CQ2mqUNayKdX2UKGgGaAloD0MIX+tSI/RfTUCUhpRSlGgVS6VoFkdAkO7/Pw/gSHV9lChoBmgJaA9DCA01CklmlGRAlIaUUpRoFU3oA2gWR0CQ8BFYuCf6dX2UKGgGaAloD0MIn82qz9U0aECUhpRSlGgVTegDaBZHQJDxUkC3gDR1fZQoaAZoCWgPQwhlbr4RXaFhQJSGlFKUaBVN6ANoFkdAkPJRGx2SuHV9lChoBmgJaA9DCI6PFmeMmmBAlIaUUpRoFU3oA2gWR0CQ8zXqJMxodX2UKGgGaAloD0MIylAVU2mMY0CUhpRSlGgVTegDaBZHQJDzmde6Zpl1fZQoaAZoCWgPQwjjjcwjfz5mQJSGlFKUaBVN6ANoFkdAkPPmuoxYaHV9lChoBmgJaA9DCPsGJjcKmGVAlIaUUpRoFU3oA2gWR0CQ9Go/A0sOdX2UKGgGaAloD0MIUWovou2jY0CUhpRSlGgVTegDaBZHQJD6MZ75VOt1fZQoaAZoCWgPQwhp5POKp+FjQJSGlFKUaBVN6ANoFkdAkPqTrJKaonV9lChoBmgJaA9DCN20GacholNAlIaUUpRoFUvTaBZHQJD7j5rP+n91fZQoaAZoCWgPQwg17s1vmE5lQJSGlFKUaBVN6ANoFkdAkP7L70nPV3V9lChoBmgJaA9DCANAFTduI2NAlIaUUpRoFU3oA2gWR0CRAk8Jlar4dX2UKGgGaAloD0MIMzMzMzOuYECUhpRSlGgVTegDaBZHQJEFqG0u14R1fZQoaAZoCWgPQwjLSpNS0PFmQJSGlFKUaBVN6ANoFkdAkQtzvE0iyXV9lChoBmgJaA9DCNpU3SMbw2JAlIaUUpRoFU3oA2gWR0CRFI384xUOdX2UKGgGaAloD0MIkUYFTrYHYkCUhpRSlGgVTegDaBZHQJEWx23azu51fZQoaAZoCWgPQwiGOUGbnK5jQJSGlFKUaBVN6ANoFkdAkSyOiN83M3V9lChoBmgJaA9DCN6ul6aIQ2hAlIaUUpRoFU3oA2gWR0CRLb3Ov+wUdX2UKGgGaAloD0MI3bJD/MNfZECUhpRSlGgVTegDaBZHQJEvFFlTWG11fZQoaAZoCWgPQwgtPgXAeH1nQJSGlFKUaBVN6ANoFkdAkTAf6XSjQHV9lChoBmgJaA9DCG2QSUZO/WZAlIaUUpRoFU3oA2gWR0CRMXZFG5MDdX2UKGgGaAloD0MI4gD6ff9WYUCUhpRSlGgVTegDaBZHQJExyyOaOPx1fZQoaAZoCWgPQwiT/fM04HhiQJSGlFKUaBVN6ANoFkdAkTJYvSMLnnV9lChoBmgJaA9DCNfDl4ki62VAlIaUUpRoFU3oA2gWR0CROD13MY/FdX2UKGgGaAloD0MIt0Htt/bNYECUhpRSlGgVTegDaBZHQJE4m+M6zVt1fZQoaAZoCWgPQwj2s1iK5GpSQJSGlFKUaBVLvmgWR0CRORfIjnmrdX2UKGgGaAloD0MIy9qmeNwWZUCUhpRSlGgVTegDaBZHQJE5i9cry2B1fZQoaAZoCWgPQwjjb3uCxK40QJSGlFKUaBVLw2gWR0CROhPI4lyBdX2UKGgGaAloD0MIFvcfmY7XYkCUhpRSlGgVTegDaBZHQJE8JFz+3ph1fZQoaAZoCWgPQwgD0ZMyqYpmQJSGlFKUaBVN6ANoFkdAkT7ww482aXV9lChoBmgJaA9DCCpTzEFQfWRAlIaUUpRoFU3oA2gWR0CRQdQDFId3dX2UKGgGaAloD0MI3gVKCiz+TUCUhpRSlGgVS6RoFkdAkUKP+GXXy3V9lChoBmgJaA9DCB2OrtJdyGNAlIaUUpRoFU3oA2gWR0CRRvU6xPfsdX2UKGgGaAloD0MIwK+RJIhqYkCUhpRSlGgVTegDaBZHQJFPOvcJtzl1fZQoaAZoCWgPQwjjGwqfraJnQJSGlFKUaBVN6ANoFkdAkVFkWdmQKnV9lChoBmgJaA9DCGGqmbUU9mVAlIaUUpRoFU3oA2gWR0CRZpaXKKYRdX2UKGgGaAloD0MI4Qz+frHCYkCUhpRSlGgVTegDaBZHQJFnswCbMHN1fZQoaAZoCWgPQwgR4V8EjXtiQJSGlFKUaBVN6ANoFkdAkWj7pJPIn3V9lChoBmgJaA9DCN50yw5xGmFAlIaUUpRoFU3oA2gWR0CRagLgn+hodX2UKGgGaAloD0MI0/iFV5KxYECUhpRSlGgVTegDaBZHQJFrpvKlpGp1fZQoaAZoCWgPQwjUKY9uhFdiQJSGlFKUaBVN6ANoFkdAkXMfh2nsLXV9lChoBmgJaA9DCLwhjQoctmRAlIaUUpRoFU3oA2gWR0CRc42Ifr8jdX2UKGgGaAloD0MI5bUSustaZECUhpRSlGgVTegDaBZHQJF0HovBacJ1fZQoaAZoCWgPQwjRzf5AOWdjQJSGlFKUaBVN6ANoFkdAkXSgPiDM/3V9lChoBmgJaA9DCCsTfqkfxWRAlIaUUpRoFU3oA2gWR0CRdTxW1c+rdX2UKGgGaAloD0MIyeTUzjC1Y0CUhpRSlGgVTegDaBZHQJF6zmaH9FZ1fZQoaAZoCWgPQwhaYmU0cr5kQJSGlFKUaBVN6ANoFkdAkX4GtU4rBnV9lChoBmgJaA9DCKkT0ERYe2dAlIaUUpRoFU3oA2gWR0CRftJXyRSxdX2UKGgGaAloD0MINQnekMYmYECUhpRSlGgVTegDaBZHQJGDpzDGcWl1fZQoaAZoCWgPQwgVHjS77upfQJSGlFKUaBVN6ANoFkdAkY03FtKqXHV9lChoBmgJaA9DCDFD44mgq2BAlIaUUpRoFU3oA2gWR0CRj64Ajps5dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV9wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGMvZGF0YTEvemhlbmh1YW5fbGl1L2FuYWNvbmRhMy9lbnZzL1JML2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGMvZGF0YTEvemhlbmh1YW5fbGl1L2FuYWNvbmRhMy9lbnZzL1JML2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.13.0-41-generic-x86_64-with-glibc2.17 #46~20.04.1-Ubuntu SMP Wed Apr 20 13:16:21 UTC 2022", "Python": "3.8.13", "Stable-Baselines3": "1.6.2", "PyTorch": "1.12.1", "GPU Enabled": "True", "Numpy": "1.23.1", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (229 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 246.47906329409517, "std_reward": 37.47734686937931, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-04T10:48:11.299367"}
|