Victarry commited on
Commit
f983548
·
1 Parent(s): 5df4a39

Update PPO LunarLander-v2 trained agent

Browse files
MLP-PPO-LunarLander.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5cdf82c3756b590eac739bbd73845a29a0b2effa94a7dd1245f5e8b60482d3bf
3
+ size 147424
MLP-PPO-LunarLander/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
MLP-PPO-LunarLander/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5d0a1385e0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5d0a138670>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5d0a138700>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5d0a138790>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f5d0a138820>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f5d0a1388b0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5d0a138940>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f5d0a1389d0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5d0a138a60>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5d0a138af0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5d0a138b80>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f5d0a1b52a0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1672841645913251414,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWV9wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGMvZGF0YTEvemhlbmh1YW5fbGl1L2FuYWNvbmRhMy9lbnZzL1JML2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGMvZGF0YTEvemhlbmh1YW5fbGl1L2FuYWNvbmRhMy9lbnZzL1JML2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJp4Bb09ujO5NtO0OZAdPDZcGyO6ppDXuAAAgD8AAIA/AEZVvVzbY7pxWiw6Xmo3tndbgDhFUDK1AACAPwAAgD/NChE8KdQSuiNIFbs845q1QkQouxSAKzoAAIA/AACAP2Y2ub24hra5bS+UOf1eIbhT3jy74oCnuAAAgD8AAIA/84Ahvo/5W7ypq6+7P8M5unytxz1Xfxc7AACAPwAAgD/NuD68uCaVuSqfjTugta04ugO2Or7PKboAAIA/AACAP1qt5z1cC3m6NZXaOg4SsDcwf4i6jgDtuQAAgD8AAIA/ABv0PFx7V7oQVwm6p1DYNfJ03TpeSh05AACAPwAAgD8NkNa9w4lIumuMmLo1VpS2AvKLO7JDsTkAAIA/AACAPwDIA71cE0267ErJutIucLavSUM7Lc/nOQAAgD8AAIA/GhEgPVybLrpgsEm6EY7aNSjB1Tr9IGo5AACAPwAAgD9mzrm8KRRLuqZ2LTnWH6k0r/jwOi5FRrgAAIA/AACAP01iaD1cq3i63u2wuz14bDhAxAc5ftf/NwAAgD8AAIA/ZkTlPQNjAT9GjBq+o1qcvlybAb184469AAAAAAAAAABmVAQ8w2k1unsl0DrHHlc2BKKwO1A58bkAAIA/AACAPy27cr5YBOo+WqHMPaC9tr7KovO9zL0ePgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVeBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIsYuiB74bY0CUhpRSlIwBbJRN6AOMAXSUR0CQOUG0NSZSdX2UKGgGaAloD0MIpfRML7H+ZECUhpRSlGgVTegDaBZHQJA5up2ll9V1fZQoaAZoCWgPQwjaqE4HMutiQJSGlFKUaBVN6ANoFkdAkDoGfGuLaXV9lChoBmgJaA9DCIBmEB/YgWNAlIaUUpRoFU3oA2gWR0CQOmR/EwWWdX2UKGgGaAloD0MIB+v/HGZXZkCUhpRSlGgVTegDaBZHQJBAQOYplSV1fZQoaAZoCWgPQwj/klSmGAlpQJSGlFKUaBVN6ANoFkdAkECdGmUGFHV9lChoBmgJaA9DCFwhrMYSfkJAlIaUUpRoFUvVaBZHQJBCyvStvGZ1fZQoaAZoCWgPQwgldQKaCFdiQJSGlFKUaBVN6ANoFkdAkES7jHXEqHV9lChoBmgJaA9DCAVrnE3HZ2JAlIaUUpRoFU3oA2gWR0CQSAVdonKGdX2UKGgGaAloD0MIF9NM9zqSYkCUhpRSlGgVTegDaBZHQJBQMXYUWVN1fZQoaAZoCWgPQwjXNO84xc5jQJSGlFKUaBVN6ANoFkdAkFDa3qiXY3V9lChoBmgJaA9DCG4VxEDXQV9AlIaUUpRoFU3oA2gWR0CQWNssg+yJdX2UKGgGaAloD0MIXKs97AVDYUCUhpRSlGgVTegDaBZHQJBx9pg1FYx1fZQoaAZoCWgPQwhi9UcYht1gQJSGlFKUaBVN6ANoFkdAkHrEPDpC8nV9lChoBmgJaA9DCNQQVfgz1mFAlIaUUpRoFU3oA2gWR0CQex6xxDLKdX2UKGgGaAloD0MIKuEJvf5iZECUhpRSlGgVTegDaBZHQJB8afpUxVR1fZQoaAZoCWgPQwiI9rGC3+5lQJSGlFKUaBVN6ANoFkdAkH1vViF0xXV9lChoBmgJaA9DCFRuopZmQGJAlIaUUpRoFU3oA2gWR0CQflP420iRdX2UKGgGaAloD0MIym37HvVIY0CUhpRSlGgVTegDaBZHQJB+sbIcR151fZQoaAZoCWgPQwj9Fp0sNaxjQJSGlFKUaBVN6ANoFkdAkH712V3Ux3V9lChoBmgJaA9DCFuVRPZBvWNAlIaUUpRoFU3oA2gWR0CQhQOKwY+CdX2UKGgGaAloD0MILlc/NklhZkCUhpRSlGgVTegDaBZHQJCFWxB3Roh1fZQoaAZoCWgPQwg+6USCKfFkQJSGlFKUaBVN6ANoFkdAkIduAI6bOXV9lChoBmgJaA9DCNb8+EsLamNAlIaUUpRoFU3oA2gWR0CQiTu2Zy+6dX2UKGgGaAloD0MIED//PfjyZECUhpRSlGgVTegDaBZHQJCMYsH0K7Z1fZQoaAZoCWgPQwgVNgNcEIhiQJSGlFKUaBVN6ANoFkdAkJTGOIZZS3V9lChoBmgJaA9DCCY49YFkXWZAlIaUUpRoFU3oA2gWR0CQlXiSJTESdX2UKGgGaAloD0MICYz1DUzxYkCUhpRSlGgVTegDaBZHQJCeZLsa86F1fZQoaAZoCWgPQwh8gVmhSGJgQJSGlFKUaBVN6ANoFkdAkJ9F2q1gIHV9lChoBmgJaA9DCGUYd4Po3GJAlIaUUpRoFU3oA2gWR0CQtxxoqTbGdX2UKGgGaAloD0MIfPDapY2CZkCUhpRSlGgVTegDaBZHQJC3fvSc9W91fZQoaAZoCWgPQwjVBieiX1pjQJSGlFKUaBVN6ANoFkdAkLjrgflp5HV9lChoBmgJaA9DCHUhVn+Ee2NAlIaUUpRoFU3oA2gWR0CQugz7/GVBdX2UKGgGaAloD0MIJHzvb1DJYkCUhpRSlGgVTegDaBZHQJC6/RiPQv91fZQoaAZoCWgPQwiOeLKbGZhkQJSGlFKUaBVN6ANoFkdAkLtmFev6j3V9lChoBmgJaA9DCCaKkLqdimdAlIaUUpRoFU3oA2gWR0CQu7K+i8FqdX2UKGgGaAloD0MIjUP9LmyBSkCUhpRSlGgVS25oFkdAkLw87uDzy3V9lChoBmgJaA9DCEt4Qq+/P2NAlIaUUpRoFU3oA2gWR0CQwhFKTSssdX2UKGgGaAloD0MInnqkwe0wZUCUhpRSlGgVTegDaBZHQJDCb8Nx2jh1fZQoaAZoCWgPQwgZ48Ps5bxnQJSGlFKUaBVN6ANoFkdAkMRqg/Tsp3V9lChoBmgJaA9DCNUHkncOu2NAlIaUUpRoFU3oA2gWR0CQxhrv9cbBdX2UKGgGaAloD0MIAizy6wdwYUCUhpRSlGgVTegDaBZHQJDJBLkCFK11fZQoaAZoCWgPQwg7N23GaSgVQJSGlFKUaBVLvmgWR0CQy+/cFhXsdX2UKGgGaAloD0MI8ZvCSgVoZECUhpRSlGgVTegDaBZHQJDQXmSyMUB1fZQoaAZoCWgPQwhS81XyMQVjQJSGlFKUaBVN6ANoFkdAkNDzAFgUlHV9lChoBmgJaA9DCHdJnBVRu15AlIaUUpRoFU3oA2gWR0CQ2Hv7m+0xdX2UKGgGaAloD0MIkX9mEJ+AZUCUhpRSlGgVTegDaBZHQJDZQd3jdYZ1fZQoaAZoCWgPQwiL3T6rzI5TQJSGlFKUaBVL6WgWR0CQ2mqUNayKdX2UKGgGaAloD0MIX+tSI/RfTUCUhpRSlGgVS6VoFkdAkO7/Pw/gSHV9lChoBmgJaA9DCA01CklmlGRAlIaUUpRoFU3oA2gWR0CQ8BFYuCf6dX2UKGgGaAloD0MIn82qz9U0aECUhpRSlGgVTegDaBZHQJDxUkC3gDR1fZQoaAZoCWgPQwhlbr4RXaFhQJSGlFKUaBVN6ANoFkdAkPJRGx2SuHV9lChoBmgJaA9DCI6PFmeMmmBAlIaUUpRoFU3oA2gWR0CQ8zXqJMxodX2UKGgGaAloD0MIylAVU2mMY0CUhpRSlGgVTegDaBZHQJDzmde6Zpl1fZQoaAZoCWgPQwjjjcwjfz5mQJSGlFKUaBVN6ANoFkdAkPPmuoxYaHV9lChoBmgJaA9DCPsGJjcKmGVAlIaUUpRoFU3oA2gWR0CQ9Go/A0sOdX2UKGgGaAloD0MIUWovou2jY0CUhpRSlGgVTegDaBZHQJD6MZ75VOt1fZQoaAZoCWgPQwhp5POKp+FjQJSGlFKUaBVN6ANoFkdAkPqTrJKaonV9lChoBmgJaA9DCN20GacholNAlIaUUpRoFUvTaBZHQJD7j5rP+n91fZQoaAZoCWgPQwg17s1vmE5lQJSGlFKUaBVN6ANoFkdAkP7L70nPV3V9lChoBmgJaA9DCANAFTduI2NAlIaUUpRoFU3oA2gWR0CRAk8Jlar4dX2UKGgGaAloD0MIMzMzMzOuYECUhpRSlGgVTegDaBZHQJEFqG0u14R1fZQoaAZoCWgPQwjLSpNS0PFmQJSGlFKUaBVN6ANoFkdAkQtzvE0iyXV9lChoBmgJaA9DCNpU3SMbw2JAlIaUUpRoFU3oA2gWR0CRFI384xUOdX2UKGgGaAloD0MIkUYFTrYHYkCUhpRSlGgVTegDaBZHQJEWx23azu51fZQoaAZoCWgPQwiGOUGbnK5jQJSGlFKUaBVN6ANoFkdAkSyOiN83M3V9lChoBmgJaA9DCN6ul6aIQ2hAlIaUUpRoFU3oA2gWR0CRLb3Ov+wUdX2UKGgGaAloD0MI3bJD/MNfZECUhpRSlGgVTegDaBZHQJEvFFlTWG11fZQoaAZoCWgPQwgtPgXAeH1nQJSGlFKUaBVN6ANoFkdAkTAf6XSjQHV9lChoBmgJaA9DCG2QSUZO/WZAlIaUUpRoFU3oA2gWR0CRMXZFG5MDdX2UKGgGaAloD0MI4gD6ff9WYUCUhpRSlGgVTegDaBZHQJExyyOaOPx1fZQoaAZoCWgPQwiT/fM04HhiQJSGlFKUaBVN6ANoFkdAkTJYvSMLnnV9lChoBmgJaA9DCNfDl4ki62VAlIaUUpRoFU3oA2gWR0CROD13MY/FdX2UKGgGaAloD0MIt0Htt/bNYECUhpRSlGgVTegDaBZHQJE4m+M6zVt1fZQoaAZoCWgPQwj2s1iK5GpSQJSGlFKUaBVLvmgWR0CRORfIjnmrdX2UKGgGaAloD0MIy9qmeNwWZUCUhpRSlGgVTegDaBZHQJE5i9cry2B1fZQoaAZoCWgPQwjjb3uCxK40QJSGlFKUaBVLw2gWR0CROhPI4lyBdX2UKGgGaAloD0MIFvcfmY7XYkCUhpRSlGgVTegDaBZHQJE8JFz+3ph1fZQoaAZoCWgPQwgD0ZMyqYpmQJSGlFKUaBVN6ANoFkdAkT7ww482aXV9lChoBmgJaA9DCCpTzEFQfWRAlIaUUpRoFU3oA2gWR0CRQdQDFId3dX2UKGgGaAloD0MI3gVKCiz+TUCUhpRSlGgVS6RoFkdAkUKP+GXXy3V9lChoBmgJaA9DCB2OrtJdyGNAlIaUUpRoFU3oA2gWR0CRRvU6xPfsdX2UKGgGaAloD0MIwK+RJIhqYkCUhpRSlGgVTegDaBZHQJFPOvcJtzl1fZQoaAZoCWgPQwjjGwqfraJnQJSGlFKUaBVN6ANoFkdAkVFkWdmQKnV9lChoBmgJaA9DCGGqmbUU9mVAlIaUUpRoFU3oA2gWR0CRZpaXKKYRdX2UKGgGaAloD0MI4Qz+frHCYkCUhpRSlGgVTegDaBZHQJFnswCbMHN1fZQoaAZoCWgPQwgR4V8EjXtiQJSGlFKUaBVN6ANoFkdAkWj7pJPIn3V9lChoBmgJaA9DCN50yw5xGmFAlIaUUpRoFU3oA2gWR0CRagLgn+hodX2UKGgGaAloD0MI0/iFV5KxYECUhpRSlGgVTegDaBZHQJFrpvKlpGp1fZQoaAZoCWgPQwjUKY9uhFdiQJSGlFKUaBVN6ANoFkdAkXMfh2nsLXV9lChoBmgJaA9DCLwhjQoctmRAlIaUUpRoFU3oA2gWR0CRc42Ifr8jdX2UKGgGaAloD0MI5bUSustaZECUhpRSlGgVTegDaBZHQJF0HovBacJ1fZQoaAZoCWgPQwjRzf5AOWdjQJSGlFKUaBVN6ANoFkdAkXSgPiDM/3V9lChoBmgJaA9DCCsTfqkfxWRAlIaUUpRoFU3oA2gWR0CRdTxW1c+rdX2UKGgGaAloD0MIyeTUzjC1Y0CUhpRSlGgVTegDaBZHQJF6zmaH9FZ1fZQoaAZoCWgPQwhaYmU0cr5kQJSGlFKUaBVN6ANoFkdAkX4GtU4rBnV9lChoBmgJaA9DCKkT0ERYe2dAlIaUUpRoFU3oA2gWR0CRftJXyRSxdX2UKGgGaAloD0MINQnekMYmYECUhpRSlGgVTegDaBZHQJGDpzDGcWl1fZQoaAZoCWgPQwgVHjS77upfQJSGlFKUaBVN6ANoFkdAkY03FtKqXHV9lChoBmgJaA9DCDFD44mgq2BAlIaUUpRoFU3oA2gWR0CRj64Ajps5dWUu"
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 248,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWV9wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGMvZGF0YTEvemhlbmh1YW5fbGl1L2FuYWNvbmRhMy9lbnZzL1JML2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGMvZGF0YTEvemhlbmh1YW5fbGl1L2FuYWNvbmRhMy9lbnZzL1JML2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
MLP-PPO-LunarLander/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6aba4c546897b4d73efb1588a3720091e1e0bec71038e5f0c03a0a3aac048f9e
3
+ size 87993
MLP-PPO-LunarLander/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6954a42b6584961803c581fc57622bf5223bb8786c45ce23c86221f166e106d1
3
+ size 43201
MLP-PPO-LunarLander/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
MLP-PPO-LunarLander/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.13.0-41-generic-x86_64-with-glibc2.17 #46~20.04.1-Ubuntu SMP Wed Apr 20 13:16:21 UTC 2022
2
+ Python: 3.8.13
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.12.1
5
+ GPU Enabled: True
6
+ Numpy: 1.23.1
7
+ Gym: 0.21.0
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 246.48 +/- 37.48
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5d0a1385e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5d0a138670>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5d0a138700>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5d0a138790>", "_build": "<function ActorCriticPolicy._build at 0x7f5d0a138820>", "forward": "<function ActorCriticPolicy.forward at 0x7f5d0a1388b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5d0a138940>", "_predict": "<function ActorCriticPolicy._predict at 0x7f5d0a1389d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5d0a138a60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5d0a138af0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5d0a138b80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f5d0a1b52a0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1672841645913251414, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV9wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGMvZGF0YTEvemhlbmh1YW5fbGl1L2FuYWNvbmRhMy9lbnZzL1JML2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGMvZGF0YTEvemhlbmh1YW5fbGl1L2FuYWNvbmRhMy9lbnZzL1JML2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJp4Bb09ujO5NtO0OZAdPDZcGyO6ppDXuAAAgD8AAIA/AEZVvVzbY7pxWiw6Xmo3tndbgDhFUDK1AACAPwAAgD/NChE8KdQSuiNIFbs845q1QkQouxSAKzoAAIA/AACAP2Y2ub24hra5bS+UOf1eIbhT3jy74oCnuAAAgD8AAIA/84Ahvo/5W7ypq6+7P8M5unytxz1Xfxc7AACAPwAAgD/NuD68uCaVuSqfjTugta04ugO2Or7PKboAAIA/AACAP1qt5z1cC3m6NZXaOg4SsDcwf4i6jgDtuQAAgD8AAIA/ABv0PFx7V7oQVwm6p1DYNfJ03TpeSh05AACAPwAAgD8NkNa9w4lIumuMmLo1VpS2AvKLO7JDsTkAAIA/AACAPwDIA71cE0267ErJutIucLavSUM7Lc/nOQAAgD8AAIA/GhEgPVybLrpgsEm6EY7aNSjB1Tr9IGo5AACAPwAAgD9mzrm8KRRLuqZ2LTnWH6k0r/jwOi5FRrgAAIA/AACAP01iaD1cq3i63u2wuz14bDhAxAc5ftf/NwAAgD8AAIA/ZkTlPQNjAT9GjBq+o1qcvlybAb184469AAAAAAAAAABmVAQ8w2k1unsl0DrHHlc2BKKwO1A58bkAAIA/AACAPy27cr5YBOo+WqHMPaC9tr7KovO9zL0ePgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVeBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIsYuiB74bY0CUhpRSlIwBbJRN6AOMAXSUR0CQOUG0NSZSdX2UKGgGaAloD0MIpfRML7H+ZECUhpRSlGgVTegDaBZHQJA5up2ll9V1fZQoaAZoCWgPQwjaqE4HMutiQJSGlFKUaBVN6ANoFkdAkDoGfGuLaXV9lChoBmgJaA9DCIBmEB/YgWNAlIaUUpRoFU3oA2gWR0CQOmR/EwWWdX2UKGgGaAloD0MIB+v/HGZXZkCUhpRSlGgVTegDaBZHQJBAQOYplSV1fZQoaAZoCWgPQwj/klSmGAlpQJSGlFKUaBVN6ANoFkdAkECdGmUGFHV9lChoBmgJaA9DCFwhrMYSfkJAlIaUUpRoFUvVaBZHQJBCyvStvGZ1fZQoaAZoCWgPQwgldQKaCFdiQJSGlFKUaBVN6ANoFkdAkES7jHXEqHV9lChoBmgJaA9DCAVrnE3HZ2JAlIaUUpRoFU3oA2gWR0CQSAVdonKGdX2UKGgGaAloD0MIF9NM9zqSYkCUhpRSlGgVTegDaBZHQJBQMXYUWVN1fZQoaAZoCWgPQwjXNO84xc5jQJSGlFKUaBVN6ANoFkdAkFDa3qiXY3V9lChoBmgJaA9DCG4VxEDXQV9AlIaUUpRoFU3oA2gWR0CQWNssg+yJdX2UKGgGaAloD0MIXKs97AVDYUCUhpRSlGgVTegDaBZHQJBx9pg1FYx1fZQoaAZoCWgPQwhi9UcYht1gQJSGlFKUaBVN6ANoFkdAkHrEPDpC8nV9lChoBmgJaA9DCNQQVfgz1mFAlIaUUpRoFU3oA2gWR0CQex6xxDLKdX2UKGgGaAloD0MIKuEJvf5iZECUhpRSlGgVTegDaBZHQJB8afpUxVR1fZQoaAZoCWgPQwiI9rGC3+5lQJSGlFKUaBVN6ANoFkdAkH1vViF0xXV9lChoBmgJaA9DCFRuopZmQGJAlIaUUpRoFU3oA2gWR0CQflP420iRdX2UKGgGaAloD0MIym37HvVIY0CUhpRSlGgVTegDaBZHQJB+sbIcR151fZQoaAZoCWgPQwj9Fp0sNaxjQJSGlFKUaBVN6ANoFkdAkH712V3Ux3V9lChoBmgJaA9DCFuVRPZBvWNAlIaUUpRoFU3oA2gWR0CQhQOKwY+CdX2UKGgGaAloD0MILlc/NklhZkCUhpRSlGgVTegDaBZHQJCFWxB3Roh1fZQoaAZoCWgPQwg+6USCKfFkQJSGlFKUaBVN6ANoFkdAkIduAI6bOXV9lChoBmgJaA9DCNb8+EsLamNAlIaUUpRoFU3oA2gWR0CQiTu2Zy+6dX2UKGgGaAloD0MIED//PfjyZECUhpRSlGgVTegDaBZHQJCMYsH0K7Z1fZQoaAZoCWgPQwgVNgNcEIhiQJSGlFKUaBVN6ANoFkdAkJTGOIZZS3V9lChoBmgJaA9DCCY49YFkXWZAlIaUUpRoFU3oA2gWR0CQlXiSJTESdX2UKGgGaAloD0MICYz1DUzxYkCUhpRSlGgVTegDaBZHQJCeZLsa86F1fZQoaAZoCWgPQwh8gVmhSGJgQJSGlFKUaBVN6ANoFkdAkJ9F2q1gIHV9lChoBmgJaA9DCGUYd4Po3GJAlIaUUpRoFU3oA2gWR0CQtxxoqTbGdX2UKGgGaAloD0MIfPDapY2CZkCUhpRSlGgVTegDaBZHQJC3fvSc9W91fZQoaAZoCWgPQwjVBieiX1pjQJSGlFKUaBVN6ANoFkdAkLjrgflp5HV9lChoBmgJaA9DCHUhVn+Ee2NAlIaUUpRoFU3oA2gWR0CQugz7/GVBdX2UKGgGaAloD0MIJHzvb1DJYkCUhpRSlGgVTegDaBZHQJC6/RiPQv91fZQoaAZoCWgPQwiOeLKbGZhkQJSGlFKUaBVN6ANoFkdAkLtmFev6j3V9lChoBmgJaA9DCCaKkLqdimdAlIaUUpRoFU3oA2gWR0CQu7K+i8FqdX2UKGgGaAloD0MIjUP9LmyBSkCUhpRSlGgVS25oFkdAkLw87uDzy3V9lChoBmgJaA9DCEt4Qq+/P2NAlIaUUpRoFU3oA2gWR0CQwhFKTSssdX2UKGgGaAloD0MInnqkwe0wZUCUhpRSlGgVTegDaBZHQJDCb8Nx2jh1fZQoaAZoCWgPQwgZ48Ps5bxnQJSGlFKUaBVN6ANoFkdAkMRqg/Tsp3V9lChoBmgJaA9DCNUHkncOu2NAlIaUUpRoFU3oA2gWR0CQxhrv9cbBdX2UKGgGaAloD0MIAizy6wdwYUCUhpRSlGgVTegDaBZHQJDJBLkCFK11fZQoaAZoCWgPQwg7N23GaSgVQJSGlFKUaBVLvmgWR0CQy+/cFhXsdX2UKGgGaAloD0MI8ZvCSgVoZECUhpRSlGgVTegDaBZHQJDQXmSyMUB1fZQoaAZoCWgPQwhS81XyMQVjQJSGlFKUaBVN6ANoFkdAkNDzAFgUlHV9lChoBmgJaA9DCHdJnBVRu15AlIaUUpRoFU3oA2gWR0CQ2Hv7m+0xdX2UKGgGaAloD0MIkX9mEJ+AZUCUhpRSlGgVTegDaBZHQJDZQd3jdYZ1fZQoaAZoCWgPQwiL3T6rzI5TQJSGlFKUaBVL6WgWR0CQ2mqUNayKdX2UKGgGaAloD0MIX+tSI/RfTUCUhpRSlGgVS6VoFkdAkO7/Pw/gSHV9lChoBmgJaA9DCA01CklmlGRAlIaUUpRoFU3oA2gWR0CQ8BFYuCf6dX2UKGgGaAloD0MIn82qz9U0aECUhpRSlGgVTegDaBZHQJDxUkC3gDR1fZQoaAZoCWgPQwhlbr4RXaFhQJSGlFKUaBVN6ANoFkdAkPJRGx2SuHV9lChoBmgJaA9DCI6PFmeMmmBAlIaUUpRoFU3oA2gWR0CQ8zXqJMxodX2UKGgGaAloD0MIylAVU2mMY0CUhpRSlGgVTegDaBZHQJDzmde6Zpl1fZQoaAZoCWgPQwjjjcwjfz5mQJSGlFKUaBVN6ANoFkdAkPPmuoxYaHV9lChoBmgJaA9DCPsGJjcKmGVAlIaUUpRoFU3oA2gWR0CQ9Go/A0sOdX2UKGgGaAloD0MIUWovou2jY0CUhpRSlGgVTegDaBZHQJD6MZ75VOt1fZQoaAZoCWgPQwhp5POKp+FjQJSGlFKUaBVN6ANoFkdAkPqTrJKaonV9lChoBmgJaA9DCN20GacholNAlIaUUpRoFUvTaBZHQJD7j5rP+n91fZQoaAZoCWgPQwg17s1vmE5lQJSGlFKUaBVN6ANoFkdAkP7L70nPV3V9lChoBmgJaA9DCANAFTduI2NAlIaUUpRoFU3oA2gWR0CRAk8Jlar4dX2UKGgGaAloD0MIMzMzMzOuYECUhpRSlGgVTegDaBZHQJEFqG0u14R1fZQoaAZoCWgPQwjLSpNS0PFmQJSGlFKUaBVN6ANoFkdAkQtzvE0iyXV9lChoBmgJaA9DCNpU3SMbw2JAlIaUUpRoFU3oA2gWR0CRFI384xUOdX2UKGgGaAloD0MIkUYFTrYHYkCUhpRSlGgVTegDaBZHQJEWx23azu51fZQoaAZoCWgPQwiGOUGbnK5jQJSGlFKUaBVN6ANoFkdAkSyOiN83M3V9lChoBmgJaA9DCN6ul6aIQ2hAlIaUUpRoFU3oA2gWR0CRLb3Ov+wUdX2UKGgGaAloD0MI3bJD/MNfZECUhpRSlGgVTegDaBZHQJEvFFlTWG11fZQoaAZoCWgPQwgtPgXAeH1nQJSGlFKUaBVN6ANoFkdAkTAf6XSjQHV9lChoBmgJaA9DCG2QSUZO/WZAlIaUUpRoFU3oA2gWR0CRMXZFG5MDdX2UKGgGaAloD0MI4gD6ff9WYUCUhpRSlGgVTegDaBZHQJExyyOaOPx1fZQoaAZoCWgPQwiT/fM04HhiQJSGlFKUaBVN6ANoFkdAkTJYvSMLnnV9lChoBmgJaA9DCNfDl4ki62VAlIaUUpRoFU3oA2gWR0CROD13MY/FdX2UKGgGaAloD0MIt0Htt/bNYECUhpRSlGgVTegDaBZHQJE4m+M6zVt1fZQoaAZoCWgPQwj2s1iK5GpSQJSGlFKUaBVLvmgWR0CRORfIjnmrdX2UKGgGaAloD0MIy9qmeNwWZUCUhpRSlGgVTegDaBZHQJE5i9cry2B1fZQoaAZoCWgPQwjjb3uCxK40QJSGlFKUaBVLw2gWR0CROhPI4lyBdX2UKGgGaAloD0MIFvcfmY7XYkCUhpRSlGgVTegDaBZHQJE8JFz+3ph1fZQoaAZoCWgPQwgD0ZMyqYpmQJSGlFKUaBVN6ANoFkdAkT7ww482aXV9lChoBmgJaA9DCCpTzEFQfWRAlIaUUpRoFU3oA2gWR0CRQdQDFId3dX2UKGgGaAloD0MI3gVKCiz+TUCUhpRSlGgVS6RoFkdAkUKP+GXXy3V9lChoBmgJaA9DCB2OrtJdyGNAlIaUUpRoFU3oA2gWR0CRRvU6xPfsdX2UKGgGaAloD0MIwK+RJIhqYkCUhpRSlGgVTegDaBZHQJFPOvcJtzl1fZQoaAZoCWgPQwjjGwqfraJnQJSGlFKUaBVN6ANoFkdAkVFkWdmQKnV9lChoBmgJaA9DCGGqmbUU9mVAlIaUUpRoFU3oA2gWR0CRZpaXKKYRdX2UKGgGaAloD0MI4Qz+frHCYkCUhpRSlGgVTegDaBZHQJFnswCbMHN1fZQoaAZoCWgPQwgR4V8EjXtiQJSGlFKUaBVN6ANoFkdAkWj7pJPIn3V9lChoBmgJaA9DCN50yw5xGmFAlIaUUpRoFU3oA2gWR0CRagLgn+hodX2UKGgGaAloD0MI0/iFV5KxYECUhpRSlGgVTegDaBZHQJFrpvKlpGp1fZQoaAZoCWgPQwjUKY9uhFdiQJSGlFKUaBVN6ANoFkdAkXMfh2nsLXV9lChoBmgJaA9DCLwhjQoctmRAlIaUUpRoFU3oA2gWR0CRc42Ifr8jdX2UKGgGaAloD0MI5bUSustaZECUhpRSlGgVTegDaBZHQJF0HovBacJ1fZQoaAZoCWgPQwjRzf5AOWdjQJSGlFKUaBVN6ANoFkdAkXSgPiDM/3V9lChoBmgJaA9DCCsTfqkfxWRAlIaUUpRoFU3oA2gWR0CRdTxW1c+rdX2UKGgGaAloD0MIyeTUzjC1Y0CUhpRSlGgVTegDaBZHQJF6zmaH9FZ1fZQoaAZoCWgPQwhaYmU0cr5kQJSGlFKUaBVN6ANoFkdAkX4GtU4rBnV9lChoBmgJaA9DCKkT0ERYe2dAlIaUUpRoFU3oA2gWR0CRftJXyRSxdX2UKGgGaAloD0MINQnekMYmYECUhpRSlGgVTegDaBZHQJGDpzDGcWl1fZQoaAZoCWgPQwgVHjS77upfQJSGlFKUaBVN6ANoFkdAkY03FtKqXHV9lChoBmgJaA9DCDFD44mgq2BAlIaUUpRoFU3oA2gWR0CRj64Ajps5dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV9wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGMvZGF0YTEvemhlbmh1YW5fbGl1L2FuYWNvbmRhMy9lbnZzL1JML2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGMvZGF0YTEvemhlbmh1YW5fbGl1L2FuYWNvbmRhMy9lbnZzL1JML2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.13.0-41-generic-x86_64-with-glibc2.17 #46~20.04.1-Ubuntu SMP Wed Apr 20 13:16:21 UTC 2022", "Python": "3.8.13", "Stable-Baselines3": "1.6.2", "PyTorch": "1.12.1", "GPU Enabled": "True", "Numpy": "1.23.1", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (229 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 246.47906329409517, "std_reward": 37.47734686937931, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-04T10:48:11.299367"}