--- license: mit tags: - generated_from_keras_callback model-index: - name: ViditRaj/XLM_Roberta_Hindi_Ads_Classifier results: [] --- # ViditRaj/XLM_Roberta_Hindi_Ads_Classifier This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.3258 - Validation Loss: 0.2867 - Train Accuracy: 0.9149 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': 2e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Epoch | |:----------:|:---------------:|:--------------:|:-----:| | 0.3738 | 0.2117 | 0.9301 | 0 | | 0.2323 | 0.1927 | 0.9347 | 1 | | 0.2013 | 0.1739 | 0.9377 | 2 | | 0.4551 | 0.5800 | 0.7219 | 3 | | 0.3258 | 0.2867 | 0.9149 | 4 | ### Framework versions - Transformers 4.27.3 - TensorFlow 2.11.0 - Datasets 2.10.1 - Tokenizers 0.13.2