Update README.md
Browse files
README.md
CHANGED
@@ -1,41 +1,11 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
tags:
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
## Quickstart
|
7 |
-
|
8 |
-
```python
|
9 |
-
import torch
|
10 |
-
from transformers import GPT2LMHeadModel, GPT2Tokenizer
|
11 |
-
|
12 |
-
|
13 |
-
path = "Vidyuth/GPT2-finetuned-medical-instructions"
|
14 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
15 |
-
tokenizer = GPT2Tokenizer.from_pretrained(path)
|
16 |
-
model = GPT2LMHeadModel.from_pretrained(path).to(device)
|
17 |
-
|
18 |
-
prompt_input = (
|
19 |
-
"The conversation between human and AI assistant.\n"
|
20 |
-
"[|Human|] {input}\n"
|
21 |
-
"[|AI|]"
|
22 |
-
)
|
23 |
-
sentence = prompt_input.format_map({'input': "what is parkinson's disease?"})
|
24 |
-
inputs = tokenizer(sentence, return_tensors="pt").to(device)
|
25 |
-
|
26 |
-
with torch.no_grad():
|
27 |
-
beam_output = model.generate(**inputs,
|
28 |
-
min_new_tokens=1,
|
29 |
-
max_length=512,
|
30 |
-
num_beams=3,
|
31 |
-
repetition_penalty=1.2,
|
32 |
-
early_stopping=True,
|
33 |
-
eos_token_id=198
|
34 |
-
)
|
35 |
-
print(tokenizer.decode(beam_output[0], skip_special_tokens=True))
|
36 |
-
```
|
37 |
-
|
38 |
-
|
39 |
## Model Details
|
40 |
|
41 |
### Model Description
|
@@ -56,7 +26,7 @@ This is the model card of a 🤗 transformers model that has been pushed on the
|
|
56 |
|
57 |
<!-- Provide the basic links for the model. -->
|
58 |
|
59 |
-
- **Repository:** [
|
60 |
- **Paper [optional]:** [More Information Needed]
|
61 |
- **Demo [optional]:** [More Information Needed]
|
62 |
|
@@ -97,7 +67,37 @@ Users (both direct and downstream) should be made aware of the risks, biases and
|
|
97 |
## How to Get Started with the Model
|
98 |
|
99 |
|
100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
## Training Details
|
103 |
|
@@ -222,6 +222,4 @@ Carbon emissions can be estimated using the [Machine Learning Impact calculator]
|
|
222 |
|
223 |
## Model Card Contact
|
224 |
|
225 |
-
[More Information Needed]
|
226 |
-
|
227 |
-
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
tags:
|
4 |
+
- '-medical'
|
5 |
+
datasets:
|
6 |
+
- Mohammed-Altaf/medical-instruction-120k
|
7 |
---
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
## Model Details
|
10 |
|
11 |
### Model Description
|
|
|
26 |
|
27 |
<!-- Provide the basic links for the model. -->
|
28 |
|
29 |
+
- **Repository:** [https://huggingface.co/jianghc/medical_chatbot]
|
30 |
- **Paper [optional]:** [More Information Needed]
|
31 |
- **Demo [optional]:** [More Information Needed]
|
32 |
|
|
|
67 |
## How to Get Started with the Model
|
68 |
|
69 |
|
70 |
+
|
71 |
+
```python
|
72 |
+
import torch
|
73 |
+
from transformers import GPT2LMHeadModel, GPT2Tokenizer
|
74 |
+
|
75 |
+
|
76 |
+
path = "Vidyuth/GPT2-finetuned-medical-instructions"
|
77 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
78 |
+
tokenizer = GPT2Tokenizer.from_pretrained(path)
|
79 |
+
model = GPT2LMHeadModel.from_pretrained(path).to(device)
|
80 |
+
|
81 |
+
prompt_input = (
|
82 |
+
"The conversation between human and AI assistant.\n"
|
83 |
+
"[|Human|] {input}\n"
|
84 |
+
"[|AI|]"
|
85 |
+
)
|
86 |
+
sentence = prompt_input.format_map({'input': "what is parkinson's disease?"})
|
87 |
+
inputs = tokenizer(sentence, return_tensors="pt").to(device)
|
88 |
+
|
89 |
+
with torch.no_grad():
|
90 |
+
beam_output = model.generate(**inputs,
|
91 |
+
min_new_tokens=1,
|
92 |
+
max_length=512,
|
93 |
+
num_beams=3,
|
94 |
+
repetition_penalty=1.2,
|
95 |
+
early_stopping=True,
|
96 |
+
eos_token_id=198
|
97 |
+
)
|
98 |
+
print(tokenizer.decode(beam_output[0], skip_special_tokens=True))
|
99 |
+
```
|
100 |
+
|
101 |
|
102 |
## Training Details
|
103 |
|
|
|
222 |
|
223 |
## Model Card Contact
|
224 |
|
225 |
+
[More Information Needed]
|
|
|
|