Safetensors
English
Russian
llama
AlexWortega chameleon-lizard commited on
Commit
3d76e0f
·
verified ·
1 Parent(s): e38b700

Update README.md (#1)

Browse files

- Update README.md (a969a6e2dc991cdf8dfcdd2935d801470bc06188)


Co-authored-by: Nikita Sushko <chameleon-lizard@users.noreply.huggingface.co>

Files changed (1) hide show
  1. README.md +6 -6
README.md CHANGED
@@ -16,23 +16,23 @@ base_model:
16
 
17
  **Vikhr-Llama3.1** - это унимодальная LLM (Large Language Model) на 8B параметров представляющая из себя улучшенную версию [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct) командой **VikhrModels**, адаптированную преимущественно для русского и английского языков. Для ее обучения мы использовали несколько этапов включающих в себя **SFT** и **SMPO** - нашу собственную вариацию DPO, подробнее читайте в секции *"Как эта модель создавалась"*.
18
 
19
- Модель оптимизированна для различных вариантов использования, включая ризонинг, суммаризацию, код, roleplay, поддержание диалога. Vikhr-Llama обладает возможностью многоязычной генерации, и высокопроизводительными возможностями RAG. Модель иммет лучшие оценки среди прочих на наших инструктивных и RAG бенчарках и, поэтому, мы верим, что во многих задачах может быть лучше чем gpt-3.5-turbo от OpenAI.
20
 
21
  Весь использованный код для обучения доступен в нашем репозитории [effective_llm_alignment](https://github.com/VikhrModels/effective_llm_alignment/) на GitHub, а основные датасеты доступны в нашем [профиле на HF](https://huggingface.co/Vikhrmodels).
22
 
23
  ### Особенности
24
  1. Высокое качество генераций на русском и английском языках, а также некоторых других языках, благодаря датасету [Grandmaster-PRO-MAX](https://huggingface.co/datasets/Vikhrmodels/GrandMaster-PRO-MAX) и исходной модели
25
- 2. Поддержка системных промптов для регулриования стиля ответов
26
  3. Поддержка до 128k токенов контекста благодаря исходной модели (RoPE scaling)
27
  4. Grounded RAG режим - модель имеет специальную роль documents и специальный режим работы для поиска идентификаторов релевантных вопросу пользователя документов и использования их для ответа на вопрос, вдохновлено аналогичной способностью модели Command-R
28
 
29
  ### Метрики и оценка качества
30
 
31
- Модель оценивалась на нашем русскоязычном open-source SbS бенчмарке [ru-arena-general](https://github.com/VikhrModels/ru_llm_arena) (50 топиков по 10 вопросов), где судьей выступает gpt-4-1106-preview и [бенчмарке](https://colab.research.google.com/drive/16730rWQ4-yGqWoooLs0Ece_16frmOniP?usp=sharing) для RAG на основе тестового сета [Grounded-RAG-v2](https://huggingface.co/datasets/Vikhrmodels/Grounded-RAG-RU-v2), где судей выступа gpt-4o.
32
 
33
  #### Результаты на Ru-Arena-General
34
 
35
- В качестве референсых отвеов, с которыми сравниваются модели выступают ответы от gpt-3.5-turbo-0125, поэтому она имеет винрейт 50%.
36
 
37
  Здесь приведена лишь часть лидерборда, подробнее смотрите в репозитории бенчмарка.
38
 
@@ -55,7 +55,7 @@ base_model:
55
 
56
  Общий размер тестового сета - 200 примеров, 100 для in_domain вопросов и 100 для out_of_domain.
57
 
58
- Тут для оценки качества модель-судья gpt-4o была проинструктирована учитывать релеватность и фактологичкскую полноту ответов исходя из документов и реферсного ответа от gpt-4-1106-preview.
59
 
60
  Подробности промптов и оценок смотрите в коде бенчмарка на [коллабе](https://colab.research.google.com/drive/16730rWQ4-yGqWoooLs0Ece_16frmOniP?usp=sharing)
61
 
@@ -188,7 +188,7 @@ out_of_domain - вопросы которые специально никак н
188
  1) Обучили кастомную Reward модель (она пока не будет выкладываться в открытый доступ)
189
  2) Дедуплицировали и отфилтровали используя RM модель оригинальный датасет Vikhrmodels/GrandMaster-PRO-MAX, получив порядка 10к самых высококачественных и разнообразных диалогов.
190
  3) Сделали Rejection Sampling с SFT чекпоинтом используя полученный датасет и Reward модель. (Генерировали 7 гипотез и брали только 2 самые худшие как rejected)
191
- 4) Дообучили SFT чекпоинт с помощью нашего метода SMPO используя полученный датасет из этапа 3. SMPO был спроектирован и выбран как метод для повышения стабильности тренировки преференсов в условиях Rejection Samping и достижения нужного margin.
192
 
193
  Реализацию SMPO, rejection sampling и другое можно найти в нашей библиотеке [effective_llm_alignment](https://github.com/VikhrModels/effective_llm_alignment/) на GitHub
194
 
 
16
 
17
  **Vikhr-Llama3.1** - это унимодальная LLM (Large Language Model) на 8B параметров представляющая из себя улучшенную версию [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct) командой **VikhrModels**, адаптированную преимущественно для русского и английского языков. Для ее обучения мы использовали несколько этапов включающих в себя **SFT** и **SMPO** - нашу собственную вариацию DPO, подробнее читайте в секции *"Как эта модель создавалась"*.
18
 
19
+ Модель оптимизированна для различных вариантов использования, включая ризонинг, суммаризацию, код, roleplay, поддержание диалога. Vikhr-Llama обладает возможностью многоязычной генерации, и высокопроизводительными возможностями RAG. Модель имеет лучшие оценки среди прочих на наших инструктивных и RAG бенчарках и, поэтому, мы верим, что во многих задачах может быть лучше чем gpt-3.5-turbo от OpenAI.
20
 
21
  Весь использованный код для обучения доступен в нашем репозитории [effective_llm_alignment](https://github.com/VikhrModels/effective_llm_alignment/) на GitHub, а основные датасеты доступны в нашем [профиле на HF](https://huggingface.co/Vikhrmodels).
22
 
23
  ### Особенности
24
  1. Высокое качество генераций на русском и английском языках, а также некоторых других языках, благодаря датасету [Grandmaster-PRO-MAX](https://huggingface.co/datasets/Vikhrmodels/GrandMaster-PRO-MAX) и исходной модели
25
+ 2. Поддержка системных промптов для регулирования стиля ответов
26
  3. Поддержка до 128k токенов контекста благодаря исходной модели (RoPE scaling)
27
  4. Grounded RAG режим - модель имеет специальную роль documents и специальный режим работы для поиска идентификаторов релевантных вопросу пользователя документов и использования их для ответа на вопрос, вдохновлено аналогичной способностью модели Command-R
28
 
29
  ### Метрики и оценка качества
30
 
31
+ Модель оценивалась на нашем русскоязычном open-source SbS бенчмарке [ru-arena-general](https://github.com/VikhrModels/ru_llm_arena) (50 топиков по 10 вопросов), где судьей выступает gpt-4-1106-preview и [бенчмарке](https://colab.research.google.com/drive/16730rWQ4-yGqWoooLs0Ece_16frmOniP?usp=sharing) для RAG на основе тестового сета [Grounded-RAG-v2](https://huggingface.co/datasets/Vikhrmodels/Grounded-RAG-RU-v2), где судей выступала gpt-4o.
32
 
33
  #### Результаты на Ru-Arena-General
34
 
35
+ В качестве рефересных отвеов, с которыми сравниваются модели выступают ответы от gpt-3.5-turbo-0125, поэтому она имеет винрейт 50%.
36
 
37
  Здесь приведена лишь часть лидерборда, подробнее смотрите в репозитории бенчмарка.
38
 
 
55
 
56
  Общий размер тестового сета - 200 примеров, 100 для in_domain вопросов и 100 для out_of_domain.
57
 
58
+ Тут для оценки качества модель-судья gpt-4o была проинструктирована учитывать релеватность и фактологическую полноту ответов исходя из документов и реферсного ответа от gpt-4-1106-preview.
59
 
60
  Подробности промптов и оценок смотрите в коде бенчмарка на [коллабе](https://colab.research.google.com/drive/16730rWQ4-yGqWoooLs0Ece_16frmOniP?usp=sharing)
61
 
 
188
  1) Обучили кастомную Reward модель (она пока не будет выкладываться в открытый доступ)
189
  2) Дедуплицировали и отфилтровали используя RM модель оригинальный датасет Vikhrmodels/GrandMaster-PRO-MAX, получив порядка 10к самых высококачественных и разнообразных диалогов.
190
  3) Сделали Rejection Sampling с SFT чекпоинтом используя полученный датасет и Reward модель. (Генерировали 7 гипотез и брали только 2 самые худшие как rejected)
191
+ 4) Дообучили SFT чекпоинт с помощью нашего метода SMPO используя полученный датасет из этапа 3. SMPO был спроектирован и выбран как метод для повышения стабильности тренировки преференсов в условиях Rejection Sampling и достижения нужного margin.
192
 
193
  Реализацию SMPO, rejection sampling и другое можно найти в нашей библиотеке [effective_llm_alignment](https://github.com/VikhrModels/effective_llm_alignment/) на GitHub
194