File size: 3,179 Bytes
c9685b9 14a2058 c9685b9 14a2058 c9685b9 14a2058 c9685b9 fa1a03b c9685b9 4da0c9a c9685b9 14a2058 c9685b9 14a2058 c9685b9 14a2058 c9685b9 4da0c9a 14a2058 4da0c9a 14a2058 4da0c9a c9685b9 14a2058 c9685b9 14a2058 c9685b9 14a2058 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 |
---
license: apache-2.0
base_model: Helsinki-NLP/opus-mt-ja-pl
tags:
- generated_from_trainer
datasets:
- tatoeba
metrics:
- bleu
- chrf
model-index:
- name: opus_model
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: tatoeba
type: tatoeba
config: ja-pl
split: train
args: ja-pl
metrics:
- name: Bleu
type: bleu
value: 37.84
language:
- pl
- ja
library_name: transformers
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# opus_model
This model is a fine-tuned version of [Helsinki-NLP/opus-mt-ja-pl](https://huggingface.co/Helsinki-NLP/opus-mt-ja-pl) on the tatoeba dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6326
- Bleu: 37.8457
- Gen Len: 9.2006
- Meteor: 0.589
- Chrf: 0.589
## Model description
[Helsinki-NLP/opus-mt-ja-pl](https://huggingface.co/Helsinki-NLP/opus-mt-ja-pl) model fine-tuned on tatoeba and some pop culture texts (vn, manga, rpgs).
## Intended uses & limitations
More information needed
## Training and evaluation data
Training with kaggle notebook (GPU) on GPU P100.
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 12
- eval_batch_size: 8
- seed: 42
- optimizer: adamw_torch_fused with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 12
- mixed_precision_training: Native AMP
### Examples
| Japanese | Original translation | DeepL | Opus-mt-ja-pl-240813 |
|---------------------------|----------------------|------ |-------------------|
| 今ちょっとやることがあってね | Mam teraz coś do zrobienia. | Mam teraz kilka rzeczy do zrobienia. | Mam teraz kilka spraw do załatwienia. |
| なぜッあの少女を助けてやらなかったのだ! | Czemu jej nie pomogłeś! | Dlaczego nie pomogłeś tej dziewczynie? | Dlaczego jej nie pomogłeś?! |
| ここで何をしている? | Czego tu szukacie? | Co ty tu robisz? | Co tu robisz? |
| あんたの協力が要る | Potrzebujemy cię. | Potrzebuję twojej pomocy. | Potrzebuję twojej pomocy. |
| こたえはなに? | A jaka jest właściwie odpowiedź? | Jaka jest odpowiedź? | Co masz na myśli? |
| 一人で寝んのが怖くなったんか? | Boisz się spać sama? | Boisz się spać samotnie? | Boisz się spać samemu? |
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | Meteor | Chrf |
|:-------------:|:-----:|:------:|:---------------:|:-------:|:-------:|:------:|:-------:|
| 2.5658 | 1.0 | 57000 | 1.6196 | 22.1938 | 9.341 | 0.4576 | 44.3828 |
| 1.8982 | 6.0 | 343170 | 1.9423 | 31.1109 | 9.2355 | 0.5389 | 51.7878 |
| 1.6991 | 11.0 | 629145 | 1.1164 | 37.8457 | 9.2006 | 0.589 | 56.6614 |
### Framework versions
- Transformers 4.44.0
- Pytorch 2.4.0
- Datasets 2.20.0
- Tokenizers 0.19.1 |