File size: 8,045 Bytes
7cdd981
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
"""
 # Copyright 2020 Adobe
 # All Rights Reserved.
 
 # NOTICE: Adobe permits you to use, modify, and distribute this file in
 # accordance with the terms of the Adobe license agreement accompanying
 # it.
 
"""

import sys
sys.path.append('thirdparty/AdaptiveWingLoss')
import os, glob
import numpy as np
import cv2
import argparse
from src.approaches.train_image_translation import Image_translation_block
import torch
import pickle
import face_alignment
from src.autovc.AutoVC_mel_Convertor_retrain_version import AutoVC_mel_Convertor
import shutil
import util.utils as util
from scipy.signal import savgol_filter

from src.approaches.train_audio2landmark import Audio2landmark_model

default_head_name = 'ben'
ADD_NAIVE_EYE = True
CLOSE_INPUT_FACE_MOUTH = False


parser = argparse.ArgumentParser()
parser.add_argument('--jpg', type=str, default='{}.jpg'.format(default_head_name))
parser.add_argument('--close_input_face_mouth', default=CLOSE_INPUT_FACE_MOUTH, action='store_true')

parser.add_argument('--load_AUTOVC_name', type=str, default='examples/ckpt/ckpt_autovc.pth')
parser.add_argument('--load_a2l_G_name', type=str, default='examples/ckpt/ckpt_speaker_branch.pth')
parser.add_argument('--load_a2l_C_name', type=str, default='examples/ckpt/ckpt_content_branch.pth') #ckpt_audio2landmark_c.pth')
parser.add_argument('--load_G_name', type=str, default='examples/ckpt/ckpt_116_i2i_comb.pth') #ckpt_image2image.pth') #ckpt_i2i_finetune_150.pth') #c

parser.add_argument('--amp_lip_x', type=float, default=2.)
parser.add_argument('--amp_lip_y', type=float, default=2.)
parser.add_argument('--amp_pos', type=float, default=.5)
parser.add_argument('--reuse_train_emb_list', type=str, nargs='+', default=[]) #  ['iWeklsXc0H8']) #['45hn7-LXDX8']) #['E_kmpT-EfOg']) #'iWeklsXc0H8', '29k8RtSUjE0', '45hn7-LXDX8',
parser.add_argument('--add_audio_in', default=False, action='store_true')
parser.add_argument('--comb_fan_awing', default=False, action='store_true')
parser.add_argument('--output_folder', type=str, default='examples')

parser.add_argument('--test_end2end', default=True, action='store_true')
parser.add_argument('--dump_dir', type=str, default='', help='')
parser.add_argument('--pos_dim', default=7, type=int)
parser.add_argument('--use_prior_net', default=True, action='store_true')
parser.add_argument('--transformer_d_model', default=32, type=int)
parser.add_argument('--transformer_N', default=2, type=int)
parser.add_argument('--transformer_heads', default=2, type=int)
parser.add_argument('--spk_emb_enc_size', default=16, type=int)
parser.add_argument('--init_content_encoder', type=str, default='')
parser.add_argument('--lr', type=float, default=1e-3, help='learning rate')
parser.add_argument('--reg_lr', type=float, default=1e-6, help='weight decay')
parser.add_argument('--write', default=False, action='store_true')
parser.add_argument('--segment_batch_size', type=int, default=1, help='batch size')
parser.add_argument('--emb_coef', default=3.0, type=float)
parser.add_argument('--lambda_laplacian_smooth_loss', default=1.0, type=float)
parser.add_argument('--use_11spk_only', default=False, action='store_true')

opt_parser = parser.parse_args()

''' STEP 1: preprocess input single image '''
img =cv2.imread('examples/' + opt_parser.jpg)
predictor = face_alignment.FaceAlignment(face_alignment.LandmarksType._3D, device='cuda', flip_input=True)
shapes = predictor.get_landmarks(img)
if (not shapes or len(shapes) != 1):
    print('Cannot detect face landmarks. Exit.')
    exit(-1)
shape_3d = shapes[0]

if(opt_parser.close_input_face_mouth):
    util.close_input_face_mouth(shape_3d)


''' Additional manual adjustment to input face landmarks (slimmer lips and wider eyes) '''
# shape_3d[48:, 0] = (shape_3d[48:, 0] - np.mean(shape_3d[48:, 0])) * 0.95 + np.mean(shape_3d[48:, 0])
shape_3d[49:54, 1] += 1.
shape_3d[55:60, 1] -= 1.
shape_3d[[37,38,43,44], 1] -=2
shape_3d[[40,41,46,47], 1] +=2


''' STEP 2: normalize face as input to audio branch '''
shape_3d, scale, shift = util.norm_input_face(shape_3d)


''' STEP 3: Generate audio data as input to audio branch '''
# audio real data
au_data = []
au_emb = []
ains = glob.glob1('examples', '*.wav')
ains = [item for item in ains if item is not 'tmp.wav']
ains.sort()
for ain in ains:
    os.system('ffmpeg -y -loglevel error -i examples/{} -ar 16000 examples/tmp.wav'.format(ain))
    shutil.copyfile('examples/tmp.wav', 'examples/{}'.format(ain))

    # au embedding
    from thirdparty.resemblyer_util.speaker_emb import get_spk_emb
    me, ae = get_spk_emb('examples/{}'.format(ain))
    au_emb.append(me.reshape(-1))

    print('Processing audio file', ain)
    c = AutoVC_mel_Convertor('examples')

    au_data_i = c.convert_single_wav_to_autovc_input(audio_filename=os.path.join('examples', ain),
           autovc_model_path=opt_parser.load_AUTOVC_name)
    au_data += au_data_i
if(os.path.isfile('examples/tmp.wav')):
    os.remove('examples/tmp.wav')

# landmark fake placeholder
fl_data = []
rot_tran, rot_quat, anchor_t_shape = [], [], []
for au, info in au_data:
    au_length = au.shape[0]
    fl = np.zeros(shape=(au_length, 68 * 3))
    fl_data.append((fl, info))
    rot_tran.append(np.zeros(shape=(au_length, 3, 4)))
    rot_quat.append(np.zeros(shape=(au_length, 4)))
    anchor_t_shape.append(np.zeros(shape=(au_length, 68 * 3)))

if(os.path.exists(os.path.join('examples', 'dump', 'random_val_fl.pickle'))):
    os.remove(os.path.join('examples', 'dump', 'random_val_fl.pickle'))
if(os.path.exists(os.path.join('examples', 'dump', 'random_val_fl_interp.pickle'))):
    os.remove(os.path.join('examples', 'dump', 'random_val_fl_interp.pickle'))
if(os.path.exists(os.path.join('examples', 'dump', 'random_val_au.pickle'))):
    os.remove(os.path.join('examples', 'dump', 'random_val_au.pickle'))
if (os.path.exists(os.path.join('examples', 'dump', 'random_val_gaze.pickle'))):
    os.remove(os.path.join('examples', 'dump', 'random_val_gaze.pickle'))

with open(os.path.join('examples', 'dump', 'random_val_fl.pickle'), 'wb') as fp:
    pickle.dump(fl_data, fp)
with open(os.path.join('examples', 'dump', 'random_val_au.pickle'), 'wb') as fp:
    pickle.dump(au_data, fp)
with open(os.path.join('examples', 'dump', 'random_val_gaze.pickle'), 'wb') as fp:
    gaze = {'rot_trans':rot_tran, 'rot_quat':rot_quat, 'anchor_t_shape':anchor_t_shape}
    pickle.dump(gaze, fp)


''' STEP 4: RUN audio->landmark network'''
model = Audio2landmark_model(opt_parser, jpg_shape=shape_3d)
if(len(opt_parser.reuse_train_emb_list) == 0):
    model.test(au_emb=au_emb)
else:
    model.test(au_emb=None)


''' STEP 5: de-normalize the output to the original image scale '''
fls = glob.glob1('examples', 'pred_fls_*.txt')
fls.sort()

for i in range(0,len(fls)):
    fl = np.loadtxt(os.path.join('examples', fls[i])).reshape((-1, 68,3))
    fl[:, :, 0:2] = -fl[:, :, 0:2]
    fl[:, :, 0:2] = fl[:, :, 0:2] / scale - shift

    if (ADD_NAIVE_EYE):
        fl = util.add_naive_eye(fl)

    # additional smooth
    fl = fl.reshape((-1, 204))
    fl[:, :48 * 3] = savgol_filter(fl[:, :48 * 3], 15, 3, axis=0)
    fl[:, 48*3:] = savgol_filter(fl[:, 48*3:], 5, 3, axis=0)
    fl = fl.reshape((-1, 68, 3))

    ''' STEP 6: Imag2image translation '''
    model = Image_translation_block(opt_parser, single_test=True)
    with torch.no_grad():
        model.single_test(jpg=img, fls=fl, filename=fls[i], prefix=opt_parser.jpg.split('.')[0])
        print('finish image2image gen')
    os.remove(os.path.join('examples', fls[i]))


from IPython.display import HTML
from base64 import b64encode

for ain in ains:
  OUTPUT_MP4_NAME = '{}_pred_fls_{}_audio_embed.mp4'.format(
    opt_parser.jpg.split('.')[0],
    ain.split('.')[0]
    )
  mp4 = open('examples/{}'.format(OUTPUT_MP4_NAME),'rb').read()
  data_url = "data:video/mp4;base64," + b64encode(mp4).decode()

  print('Display animation: examples/{}'.format(OUTPUT_MP4_NAME), file=sys.stderr)
  display(HTML("""
  <video width=600 controls>
        <source src="%s" type="video/mp4">
  </video>
  """ % data_url))