File size: 8,045 Bytes
7cdd981 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
"""
# Copyright 2020 Adobe
# All Rights Reserved.
# NOTICE: Adobe permits you to use, modify, and distribute this file in
# accordance with the terms of the Adobe license agreement accompanying
# it.
"""
import sys
sys.path.append('thirdparty/AdaptiveWingLoss')
import os, glob
import numpy as np
import cv2
import argparse
from src.approaches.train_image_translation import Image_translation_block
import torch
import pickle
import face_alignment
from src.autovc.AutoVC_mel_Convertor_retrain_version import AutoVC_mel_Convertor
import shutil
import util.utils as util
from scipy.signal import savgol_filter
from src.approaches.train_audio2landmark import Audio2landmark_model
default_head_name = 'ben'
ADD_NAIVE_EYE = True
CLOSE_INPUT_FACE_MOUTH = False
parser = argparse.ArgumentParser()
parser.add_argument('--jpg', type=str, default='{}.jpg'.format(default_head_name))
parser.add_argument('--close_input_face_mouth', default=CLOSE_INPUT_FACE_MOUTH, action='store_true')
parser.add_argument('--load_AUTOVC_name', type=str, default='examples/ckpt/ckpt_autovc.pth')
parser.add_argument('--load_a2l_G_name', type=str, default='examples/ckpt/ckpt_speaker_branch.pth')
parser.add_argument('--load_a2l_C_name', type=str, default='examples/ckpt/ckpt_content_branch.pth') #ckpt_audio2landmark_c.pth')
parser.add_argument('--load_G_name', type=str, default='examples/ckpt/ckpt_116_i2i_comb.pth') #ckpt_image2image.pth') #ckpt_i2i_finetune_150.pth') #c
parser.add_argument('--amp_lip_x', type=float, default=2.)
parser.add_argument('--amp_lip_y', type=float, default=2.)
parser.add_argument('--amp_pos', type=float, default=.5)
parser.add_argument('--reuse_train_emb_list', type=str, nargs='+', default=[]) # ['iWeklsXc0H8']) #['45hn7-LXDX8']) #['E_kmpT-EfOg']) #'iWeklsXc0H8', '29k8RtSUjE0', '45hn7-LXDX8',
parser.add_argument('--add_audio_in', default=False, action='store_true')
parser.add_argument('--comb_fan_awing', default=False, action='store_true')
parser.add_argument('--output_folder', type=str, default='examples')
parser.add_argument('--test_end2end', default=True, action='store_true')
parser.add_argument('--dump_dir', type=str, default='', help='')
parser.add_argument('--pos_dim', default=7, type=int)
parser.add_argument('--use_prior_net', default=True, action='store_true')
parser.add_argument('--transformer_d_model', default=32, type=int)
parser.add_argument('--transformer_N', default=2, type=int)
parser.add_argument('--transformer_heads', default=2, type=int)
parser.add_argument('--spk_emb_enc_size', default=16, type=int)
parser.add_argument('--init_content_encoder', type=str, default='')
parser.add_argument('--lr', type=float, default=1e-3, help='learning rate')
parser.add_argument('--reg_lr', type=float, default=1e-6, help='weight decay')
parser.add_argument('--write', default=False, action='store_true')
parser.add_argument('--segment_batch_size', type=int, default=1, help='batch size')
parser.add_argument('--emb_coef', default=3.0, type=float)
parser.add_argument('--lambda_laplacian_smooth_loss', default=1.0, type=float)
parser.add_argument('--use_11spk_only', default=False, action='store_true')
opt_parser = parser.parse_args()
''' STEP 1: preprocess input single image '''
img =cv2.imread('examples/' + opt_parser.jpg)
predictor = face_alignment.FaceAlignment(face_alignment.LandmarksType._3D, device='cuda', flip_input=True)
shapes = predictor.get_landmarks(img)
if (not shapes or len(shapes) != 1):
print('Cannot detect face landmarks. Exit.')
exit(-1)
shape_3d = shapes[0]
if(opt_parser.close_input_face_mouth):
util.close_input_face_mouth(shape_3d)
''' Additional manual adjustment to input face landmarks (slimmer lips and wider eyes) '''
# shape_3d[48:, 0] = (shape_3d[48:, 0] - np.mean(shape_3d[48:, 0])) * 0.95 + np.mean(shape_3d[48:, 0])
shape_3d[49:54, 1] += 1.
shape_3d[55:60, 1] -= 1.
shape_3d[[37,38,43,44], 1] -=2
shape_3d[[40,41,46,47], 1] +=2
''' STEP 2: normalize face as input to audio branch '''
shape_3d, scale, shift = util.norm_input_face(shape_3d)
''' STEP 3: Generate audio data as input to audio branch '''
# audio real data
au_data = []
au_emb = []
ains = glob.glob1('examples', '*.wav')
ains = [item for item in ains if item is not 'tmp.wav']
ains.sort()
for ain in ains:
os.system('ffmpeg -y -loglevel error -i examples/{} -ar 16000 examples/tmp.wav'.format(ain))
shutil.copyfile('examples/tmp.wav', 'examples/{}'.format(ain))
# au embedding
from thirdparty.resemblyer_util.speaker_emb import get_spk_emb
me, ae = get_spk_emb('examples/{}'.format(ain))
au_emb.append(me.reshape(-1))
print('Processing audio file', ain)
c = AutoVC_mel_Convertor('examples')
au_data_i = c.convert_single_wav_to_autovc_input(audio_filename=os.path.join('examples', ain),
autovc_model_path=opt_parser.load_AUTOVC_name)
au_data += au_data_i
if(os.path.isfile('examples/tmp.wav')):
os.remove('examples/tmp.wav')
# landmark fake placeholder
fl_data = []
rot_tran, rot_quat, anchor_t_shape = [], [], []
for au, info in au_data:
au_length = au.shape[0]
fl = np.zeros(shape=(au_length, 68 * 3))
fl_data.append((fl, info))
rot_tran.append(np.zeros(shape=(au_length, 3, 4)))
rot_quat.append(np.zeros(shape=(au_length, 4)))
anchor_t_shape.append(np.zeros(shape=(au_length, 68 * 3)))
if(os.path.exists(os.path.join('examples', 'dump', 'random_val_fl.pickle'))):
os.remove(os.path.join('examples', 'dump', 'random_val_fl.pickle'))
if(os.path.exists(os.path.join('examples', 'dump', 'random_val_fl_interp.pickle'))):
os.remove(os.path.join('examples', 'dump', 'random_val_fl_interp.pickle'))
if(os.path.exists(os.path.join('examples', 'dump', 'random_val_au.pickle'))):
os.remove(os.path.join('examples', 'dump', 'random_val_au.pickle'))
if (os.path.exists(os.path.join('examples', 'dump', 'random_val_gaze.pickle'))):
os.remove(os.path.join('examples', 'dump', 'random_val_gaze.pickle'))
with open(os.path.join('examples', 'dump', 'random_val_fl.pickle'), 'wb') as fp:
pickle.dump(fl_data, fp)
with open(os.path.join('examples', 'dump', 'random_val_au.pickle'), 'wb') as fp:
pickle.dump(au_data, fp)
with open(os.path.join('examples', 'dump', 'random_val_gaze.pickle'), 'wb') as fp:
gaze = {'rot_trans':rot_tran, 'rot_quat':rot_quat, 'anchor_t_shape':anchor_t_shape}
pickle.dump(gaze, fp)
''' STEP 4: RUN audio->landmark network'''
model = Audio2landmark_model(opt_parser, jpg_shape=shape_3d)
if(len(opt_parser.reuse_train_emb_list) == 0):
model.test(au_emb=au_emb)
else:
model.test(au_emb=None)
''' STEP 5: de-normalize the output to the original image scale '''
fls = glob.glob1('examples', 'pred_fls_*.txt')
fls.sort()
for i in range(0,len(fls)):
fl = np.loadtxt(os.path.join('examples', fls[i])).reshape((-1, 68,3))
fl[:, :, 0:2] = -fl[:, :, 0:2]
fl[:, :, 0:2] = fl[:, :, 0:2] / scale - shift
if (ADD_NAIVE_EYE):
fl = util.add_naive_eye(fl)
# additional smooth
fl = fl.reshape((-1, 204))
fl[:, :48 * 3] = savgol_filter(fl[:, :48 * 3], 15, 3, axis=0)
fl[:, 48*3:] = savgol_filter(fl[:, 48*3:], 5, 3, axis=0)
fl = fl.reshape((-1, 68, 3))
''' STEP 6: Imag2image translation '''
model = Image_translation_block(opt_parser, single_test=True)
with torch.no_grad():
model.single_test(jpg=img, fls=fl, filename=fls[i], prefix=opt_parser.jpg.split('.')[0])
print('finish image2image gen')
os.remove(os.path.join('examples', fls[i]))
from IPython.display import HTML
from base64 import b64encode
for ain in ains:
OUTPUT_MP4_NAME = '{}_pred_fls_{}_audio_embed.mp4'.format(
opt_parser.jpg.split('.')[0],
ain.split('.')[0]
)
mp4 = open('examples/{}'.format(OUTPUT_MP4_NAME),'rb').read()
data_url = "data:video/mp4;base64," + b64encode(mp4).decode()
print('Display animation: examples/{}'.format(OUTPUT_MP4_NAME), file=sys.stderr)
display(HTML("""
<video width=600 controls>
<source src="%s" type="video/mp4">
</video>
""" % data_url))
|