|
""" |
|
# Copyright 2020 Adobe |
|
# All Rights Reserved. |
|
|
|
# NOTICE: Adobe permits you to use, modify, and distribute this file in |
|
# accordance with the terms of the Adobe license agreement accompanying |
|
# it. |
|
|
|
""" |
|
|
|
import sys |
|
sys.path.append('thirdparty/AdaptiveWingLoss') |
|
import os, glob |
|
import numpy as np |
|
import argparse |
|
import pickle |
|
from src.autovc.AutoVC_mel_Convertor_retrain_version import AutoVC_mel_Convertor |
|
import shutil |
|
|
|
ADD_NAIVE_EYE = False |
|
GEN_AUDIO = True |
|
GEN_FLS = True |
|
|
|
DEMO_CH = 'wilk.png' |
|
|
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--jpg', type=str, required=True, help='Puppet image name to animate (with filename extension), e.g. wilk.png') |
|
parser.add_argument('--jpg_bg', type=str, required=True, help='Puppet image background (with filename extension), e.g. wilk_bg.jpg') |
|
parser.add_argument('--inner_lip', default=False, action='store_true', help='add this if the puppet is created with only inner lip landmarks') |
|
|
|
parser.add_argument('--out', type=str, default='out.mp4') |
|
|
|
parser.add_argument('--load_AUTOVC_name', type=str, default='examples/ckpt/ckpt_autovc.pth') |
|
parser.add_argument('--load_a2l_G_name', type=str, default='examples/ckpt/ckpt_speaker_branch.pth') |
|
parser.add_argument('--load_a2l_C_name', type=str, default='examples/ckpt/ckpt_content_branch.pth') |
|
parser.add_argument('--load_G_name', type=str, default='examples/ckpt/ckpt_116_i2i_comb.pth') |
|
|
|
parser.add_argument('--amp_lip_x', type=float, default=2.0) |
|
parser.add_argument('--amp_lip_y', type=float, default=2.0) |
|
parser.add_argument('--amp_pos', type=float, default=0.5) |
|
parser.add_argument('--reuse_train_emb_list', type=str, nargs='+', default=[]) |
|
|
|
|
|
parser.add_argument('--add_audio_in', default=False, action='store_true') |
|
parser.add_argument('--comb_fan_awing', default=False, action='store_true') |
|
parser.add_argument('--output_folder', type=str, default='examples_cartoon') |
|
|
|
|
|
parser.add_argument('--test_end2end', default=True, action='store_true') |
|
parser.add_argument('--dump_dir', type=str, default='', help='') |
|
parser.add_argument('--pos_dim', default=7, type=int) |
|
parser.add_argument('--use_prior_net', default=True, action='store_true') |
|
parser.add_argument('--transformer_d_model', default=32, type=int) |
|
parser.add_argument('--transformer_N', default=2, type=int) |
|
parser.add_argument('--transformer_heads', default=2, type=int) |
|
parser.add_argument('--spk_emb_enc_size', default=16, type=int) |
|
parser.add_argument('--init_content_encoder', type=str, default='') |
|
parser.add_argument('--lr', type=float, default=1e-3, help='learning rate') |
|
parser.add_argument('--reg_lr', type=float, default=1e-6, help='weight decay') |
|
parser.add_argument('--write', default=False, action='store_true') |
|
parser.add_argument('--segment_batch_size', type=int, default=512, help='batch size') |
|
parser.add_argument('--emb_coef', default=3.0, type=float) |
|
parser.add_argument('--lambda_laplacian_smooth_loss', default=1.0, type=float) |
|
parser.add_argument('--use_11spk_only', default=False, action='store_true') |
|
|
|
|
|
opt_parser = parser.parse_args() |
|
|
|
DEMO_CH = opt_parser.jpg.split('.')[0] |
|
|
|
shape_3d = np.loadtxt('examples_cartoon/{}_face_close_mouth.txt'.format(DEMO_CH)) |
|
|
|
''' STEP 3: Generate audio data as input to audio branch ''' |
|
au_data = [] |
|
au_emb = [] |
|
ains = glob.glob1('examples', '*.wav') |
|
ains = [item for item in ains if item is not 'tmp.wav'] |
|
ains.sort() |
|
for ain in ains: |
|
os.system('ffmpeg -y -loglevel error -i examples/{} -ar 16000 examples/tmp.wav'.format(ain)) |
|
shutil.copyfile('examples/tmp.wav', 'examples/{}'.format(ain)) |
|
|
|
|
|
from thirdparty.resemblyer_util.speaker_emb import get_spk_emb |
|
me, ae = get_spk_emb('examples/{}'.format(ain)) |
|
au_emb.append(me.reshape(-1)) |
|
|
|
print('Processing audio file', ain) |
|
c = AutoVC_mel_Convertor('examples') |
|
au_data_i = c.convert_single_wav_to_autovc_input(audio_filename=os.path.join('examples', ain), |
|
autovc_model_path=opt_parser.load_AUTOVC_name) |
|
au_data += au_data_i |
|
|
|
if(os.path.isfile('examples/tmp.wav')): |
|
os.remove('examples/tmp.wav') |
|
|
|
fl_data = [] |
|
rot_tran, rot_quat, anchor_t_shape = [], [], [] |
|
for au, info in au_data: |
|
au_length = au.shape[0] |
|
fl = np.zeros(shape=(au_length, 68 * 3)) |
|
fl_data.append((fl, info)) |
|
rot_tran.append(np.zeros(shape=(au_length, 3, 4))) |
|
rot_quat.append(np.zeros(shape=(au_length, 4))) |
|
anchor_t_shape.append(np.zeros(shape=(au_length, 68 * 3))) |
|
|
|
if(os.path.exists(os.path.join('examples', 'dump', 'random_val_fl.pickle'))): |
|
os.remove(os.path.join('examples', 'dump', 'random_val_fl.pickle')) |
|
if(os.path.exists(os.path.join('examples', 'dump', 'random_val_fl_interp.pickle'))): |
|
os.remove(os.path.join('examples', 'dump', 'random_val_fl_interp.pickle')) |
|
if(os.path.exists(os.path.join('examples', 'dump', 'random_val_au.pickle'))): |
|
os.remove(os.path.join('examples', 'dump', 'random_val_au.pickle')) |
|
if (os.path.exists(os.path.join('examples', 'dump', 'random_val_gaze.pickle'))): |
|
os.remove(os.path.join('examples', 'dump', 'random_val_gaze.pickle')) |
|
|
|
with open(os.path.join('examples', 'dump', 'random_val_fl.pickle'), 'wb') as fp: |
|
pickle.dump(fl_data, fp) |
|
with open(os.path.join('examples', 'dump', 'random_val_au.pickle'), 'wb') as fp: |
|
pickle.dump(au_data, fp) |
|
with open(os.path.join('examples', 'dump', 'random_val_gaze.pickle'), 'wb') as fp: |
|
gaze = {'rot_trans':rot_tran, 'rot_quat':rot_quat, 'anchor_t_shape':anchor_t_shape} |
|
pickle.dump(gaze, fp) |
|
|
|
|
|
''' STEP 4: RUN audio->landmark network''' |
|
from src.approaches.train_audio2landmark import Audio2landmark_model |
|
model = Audio2landmark_model(opt_parser, jpg_shape=shape_3d) |
|
if(len(opt_parser.reuse_train_emb_list) == 0): |
|
model.test(au_emb=au_emb) |
|
else: |
|
model.test(au_emb=None) |
|
print('finish gen fls') |
|
|
|
''' STEP 5: de-normalize the output to the original image scale ''' |
|
fls_names = glob.glob1('examples_cartoon', 'pred_fls_*.txt') |
|
fls_names.sort() |
|
|
|
for i in range(0,len(fls_names)): |
|
ains = glob.glob1('examples', '*.wav') |
|
ains.sort() |
|
ain = ains[i] |
|
fl = np.loadtxt(os.path.join('examples_cartoon', fls_names[i])).reshape((-1, 68,3)) |
|
output_dir = os.path.join('examples_cartoon', fls_names[i][:-4]) |
|
try: |
|
os.makedirs(output_dir) |
|
except: |
|
pass |
|
|
|
from util.utils import get_puppet_info |
|
|
|
bound, scale, shift = get_puppet_info(DEMO_CH, ROOT_DIR='examples_cartoon') |
|
|
|
fls = fl.reshape((-1, 68, 3)) |
|
|
|
fls[:, :, 0:2] = -fls[:, :, 0:2] |
|
fls[:, :, 0:2] = (fls[:, :, 0:2] / scale) |
|
fls[:, :, 0:2] -= shift.reshape(1, 2) |
|
|
|
fls = fls.reshape(-1, 204) |
|
|
|
|
|
from scipy.signal import savgol_filter |
|
fls[:, 0:48*3] = savgol_filter(fls[:, 0:48*3], 17, 3, axis=0) |
|
fls[:, 48*3:] = savgol_filter(fls[:, 48*3:], 11, 3, axis=0) |
|
fls = fls.reshape((-1, 68, 3)) |
|
|
|
|
|
if(not opt_parser.inner_lip): |
|
r = list(range(0, 68)) |
|
fls = fls[:, r, :] |
|
fls = fls[:, :, 0:2].reshape(-1, 68 * 2) |
|
fls = np.concatenate((fls, np.tile(bound, (fls.shape[0], 1))), axis=1) |
|
fls = fls.reshape(-1, 160) |
|
|
|
else: |
|
r = list(range(0, 48)) + list(range(60, 68)) |
|
fls = fls[:, r, :] |
|
fls = fls[:, :, 0:2].reshape(-1, 56 * 2) |
|
fls = np.concatenate((fls, np.tile(bound, (fls.shape[0], 1))), axis=1) |
|
fls = fls.reshape(-1, 112 + bound.shape[1]) |
|
|
|
np.savetxt(os.path.join(output_dir, 'warped_points.txt'), fls, fmt='%.2f') |
|
|
|
|
|
static_frame = np.loadtxt(os.path.join('examples_cartoon', '{}_face_open_mouth.txt'.format(DEMO_CH))) |
|
static_frame = static_frame[r, 0:2] |
|
static_frame = np.concatenate((static_frame, bound.reshape(-1, 2)), axis=0) |
|
np.savetxt(os.path.join(output_dir, 'reference_points.txt'), static_frame, fmt='%.2f') |
|
|
|
|
|
shutil.copy(os.path.join('examples_cartoon', DEMO_CH + '_delauney_tri.txt'), |
|
os.path.join(output_dir, 'triangulation.txt')) |
|
|
|
os.remove(os.path.join('examples_cartoon', fls_names[i])) |
|
|
|
|
|
|
|
|
|
warp_exe = os.path.join(os.getcwd(), 'facewarp', 'facewarp.exe') |
|
import os |
|
|
|
if (os.path.exists(os.path.join(output_dir, 'output'))): |
|
shutil.rmtree(os.path.join(output_dir, 'output')) |
|
os.mkdir(os.path.join(output_dir, 'output')) |
|
os.chdir('{}'.format(os.path.join(output_dir, 'output'))) |
|
cur_dir = os.getcwd() |
|
print(cur_dir) |
|
|
|
if(os.name == 'nt'): |
|
''' windows ''' |
|
os.system('{} {} {} {} {} {}'.format( |
|
warp_exe, |
|
os.path.join(cur_dir, '..', '..', opt_parser.jpg), |
|
os.path.join(cur_dir, '..', 'triangulation.txt'), |
|
os.path.join(cur_dir, '..', 'reference_points.txt'), |
|
os.path.join(cur_dir, '..', 'warped_points.txt'), |
|
os.path.join(cur_dir, '..', '..', opt_parser.jpg_bg), |
|
'-novsync -dump')) |
|
else: |
|
''' linux ''' |
|
os.system('wine {} {} {} {} {} {}'.format( |
|
warp_exe, |
|
os.path.join(cur_dir, '..', '..', opt_parser.jpg), |
|
os.path.join(cur_dir, '..', 'triangulation.txt'), |
|
os.path.join(cur_dir, '..', 'reference_points.txt'), |
|
os.path.join(cur_dir, '..', 'warped_points.txt'), |
|
os.path.join(cur_dir, '..', '..', opt_parser.jpg_bg), |
|
'-novsync -dump')) |
|
os.system('ffmpeg -y -r 62.5 -f image2 -i "%06d.tga" -i {} -pix_fmt yuv420p -vf "pad=ceil(iw/2)*2:ceil(ih/2)*2" -shortest -strict -2 {}'.format( |
|
os.path.join(cur_dir, '..', '..', '..', 'examples', ain), |
|
os.path.join(cur_dir, '..', 'out.mp4') |
|
)) |
|
|