VxPhotoTalk / util /utils.py
VineX's picture
Upload 458 files
7cdd981
"""
# Copyright 2020 Adobe
# All Rights Reserved.
# NOTICE: Adobe permits you to use, modify, and distribute this file in
# accordance with the terms of the Adobe license agreement accompanying
# it.
"""
import torch.nn as nn
import torch.nn.init as init
import os
import cv2
import matplotlib.pyplot as plt
import numpy as np
class Point:
def __init__(self, x, y):
self.x = x
self.y = y
class ShapeParts:
def __init__(self, np_pts):
self.data = np_pts
def part(self, idx):
return Point(self.data[idx, 0], self.data[idx, 1])
class Record():
def __init__(self, type_list):
self.data, self.count = {}, {}
self.type_list = type_list
self.max_min_data = None
for t in type_list:
self.data[t] = 0.0
self.count[t] = 0.0
def add(self, new_data, c=1.0):
for t in self.type_list:
self.data[t] += new_data
self.count[t] += c
def per(self, t):
return self.data[t] / (self.count[t] + 1e-32)
def clean(self, t):
self.data[t], self.count[t] = 0.0, 0.0
def is_better(self, t, greater):
if(self.max_min_data == None):
self.max_min_data = self.data[t]
return True
else:
if(greater):
if(self.data[t] > self.max_min_data):
self.max_min_data = self.data[t]
return True
else:
if (self.data[t] < self.max_min_data):
self.max_min_data = self.data[t]
return True
return False
def weight_init(m):
'''
Usage:
model = Model()
model.apply(weight_init)
'''
if isinstance(m, nn.Conv1d):
init.normal_(m.weight.data)
if m.bias is not None:
init.normal_(m.bias.data)
elif isinstance(m, nn.Conv2d):
init.xavier_normal_(m.weight.data)
if m.bias is not None:
init.normal_(m.bias.data)
elif isinstance(m, nn.Conv3d):
init.xavier_normal_(m.weight.data)
if m.bias is not None:
init.normal_(m.bias.data)
elif isinstance(m, nn.ConvTranspose1d):
init.normal_(m.weight.data)
if m.bias is not None:
init.normal_(m.bias.data)
elif isinstance(m, nn.ConvTranspose2d):
init.xavier_normal_(m.weight.data)
if m.bias is not None:
init.normal_(m.bias.data)
elif isinstance(m, nn.ConvTranspose3d):
init.xavier_normal_(m.weight.data)
if m.bias is not None:
init.normal_(m.bias.data)
elif isinstance(m, nn.BatchNorm1d):
init.normal_(m.weight.data, mean=1, std=0.02)
init.constant_(m.bias.data, 0)
elif isinstance(m, nn.BatchNorm2d):
init.normal_(m.weight.data, mean=1, std=0.02)
init.constant_(m.bias.data, 0)
elif isinstance(m, nn.BatchNorm3d):
init.normal_(m.weight.data, mean=1, std=0.02)
init.constant_(m.bias.data, 0)
elif isinstance(m, nn.Linear):
init.xavier_normal_(m.weight.data)
init.normal_(m.bias.data)
elif isinstance(m, nn.LSTM):
for param in m.parameters():
if len(param.shape) >= 2:
init.orthogonal_(param.data)
else:
init.normal_(param.data)
elif isinstance(m, nn.LSTMCell):
for param in m.parameters():
if len(param.shape) >= 2:
init.orthogonal_(param.data)
else:
init.normal_(param.data)
elif isinstance(m, nn.GRU):
for param in m.parameters():
if len(param.shape) >= 2:
init.orthogonal_(param.data)
else:
init.normal_(param.data)
elif isinstance(m, nn.GRUCell):
for param in m.parameters():
if len(param.shape) >= 2:
init.orthogonal_(param.data)
else:
init.normal_(param.data)
def get_n_params(model):
pp=0
for p in list(model.parameters()):
nn=1
for s in list(p.size()):
nn = nn*s
pp += nn
return pp
def vis_landmark_on_img(img, shape, linewidth=2):
'''
Visualize landmark on images.
'''
if (type(shape) == ShapeParts):
def draw_curve(idx_list, color=(0, 255, 0), loop=False, lineWidth=linewidth):
for i in idx_list:
cv2.line(img, (shape.part(i).x, shape.part(i).y), (shape.part(i + 1).x, shape.part(i + 1).y),
color, lineWidth)
if (loop):
cv2.line(img, (shape.part(idx_list[0]).x, shape.part(idx_list[0]).y),
(shape.part(idx_list[-1] + 1).x, shape.part(idx_list[-1] + 1).y), color, lineWidth)
draw_curve(list(range(0, 16))) # jaw
draw_curve(list(range(17, 21)), color=(0, 0, 255)) # eye brow
draw_curve(list(range(22, 26)), color=(0, 0, 255))
draw_curve(list(range(27, 35))) # nose
draw_curve(list(range(36, 41)), loop=True) # eyes
draw_curve(list(range(42, 47)), loop=True)
draw_curve(list(range(48, 59)), loop=True, color=(0, 255, 255)) # mouth
draw_curve(list(range(60, 67)), loop=True, color=(255, 255, 0))
else:
def draw_curve(idx_list, color=(0, 255, 0), loop=False, lineWidth=linewidth):
for i in idx_list:
cv2.line(img, (shape[i, 0], shape[i, 1]), (shape[i + 1, 0], shape[i + 1, 1]), color, lineWidth)
if (loop):
cv2.line(img, (shape[idx_list[0], 0], shape[idx_list[0], 1]),
(shape[idx_list[-1] + 1, 0], shape[idx_list[-1] + 1, 1]), color, lineWidth)
draw_curve(list(range(0, 16))) # jaw
draw_curve(list(range(17, 21)), color=(0, 0, 255)) # eye brow
draw_curve(list(range(22, 26)), color=(0, 0, 255))
draw_curve(list(range(27, 35))) # nose
draw_curve(list(range(36, 41)), loop=True) # eyes
draw_curve(list(range(42, 47)), loop=True)
draw_curve(list(range(48, 59)), loop=True, color=(0, 255, 255)) # mouth
draw_curve(list(range(60, 67)), loop=True, color=(255, 255, 0))
return img
def vis_landmark_on_plt(fl, x_offset=0.0, show_now=True, c='r'):
def draw_curve(shape, idx_list, loop=False, x_offset=0.0, c=None):
for i in idx_list:
plt.plot((shape[i, 0] + x_offset, shape[i + 1, 0] + x_offset), (-shape[i, 1], -shape[i + 1, 1]), c=c, lineWidth=1)
if (loop):
plt.plot((shape[idx_list[0], 0] + x_offset, shape[idx_list[-1] + 1, 0] + x_offset),
(-shape[idx_list[0], 1], -shape[idx_list[-1] + 1, 1]), c=c, lineWidth=1)
draw_curve(fl, list(range(0, 16)), x_offset=x_offset, c=c) # jaw
draw_curve(fl, list(range(17, 21)), x_offset=x_offset, c=c) # eye brow
draw_curve(fl, list(range(22, 26)), x_offset=x_offset, c=c)
draw_curve(fl, list(range(27, 35)), x_offset=x_offset, c=c) # nose
draw_curve(fl, list(range(36, 41)), loop=True, x_offset=x_offset, c=c) # eyes
draw_curve(fl, list(range(42, 47)), loop=True, x_offset=x_offset, c=c)
draw_curve(fl, list(range(48, 59)), loop=True, x_offset=x_offset, c=c) # mouth
draw_curve(fl, list(range(60, 67)), loop=True, x_offset=x_offset, c=c)
if(show_now):
plt.show()
def try_mkdir(dir):
try:
os.mkdir(dir)
except:
pass
import numpy
def smooth(x, window_len=11, window='hanning'):
"""smooth the data using a window with requested size.
This method is based on the convolution of a scaled window with the signal.
The signal is prepared by introducing reflected copies of the signal
(with the window size) in both ends so that transient parts are minimized
in the begining and end part of the output signal.
input:
x: the input signal
window_len: the dimension of the smoothing window; should be an odd integer
window: the type of window from 'flat', 'hanning', 'hamming', 'bartlett', 'blackman'
flat window will produce a moving average smoothing.
output:
the smoothed signal
example:
t=linspace(-2,2,0.1)
x=sin(t)+randn(len(t))*0.1
y=smooth(x)
see also:
numpy.hanning, numpy.hamming, numpy.bartlett, numpy.blackman, numpy.convolve
scipy.signal.lfilter
the window parameter could be the window itself if an array instead of a string
NOTE: length(output) != length(input), to correct this: return y[(window_len/2-1):-(window_len/2)] instead of just y.
"""
if x.ndim != 1:
raise(ValueError, "smooth only accepts 1 dimension arrays.")
if x.size < window_len:
raise(ValueError, "Input vector needs to be bigger than window size.")
if window_len < 3:
return x
if not window in ['flat', 'hanning', 'hamming', 'bartlett', 'blackman']:
raise(ValueError, "Window is on of 'flat', 'hanning', 'hamming', 'bartlett', 'blackman'")
s = numpy.r_[x[window_len - 1:0:-1], x, x[-2:-window_len - 1:-1]]
# print(len(s))
if window == 'flat': # moving average
w = numpy.ones(window_len, 'd')
else:
w = eval('numpy.' + window + '(window_len)')
y = numpy.convolve(w / w.sum(), s, mode='valid')
return y
def get_puppet_info(DEMO_CH, ROOT_DIR):
import numpy as np
B = 5000
# for wilk example
if (DEMO_CH == 'wilk_old'):
bound = np.array([-B, -B, -B, 459, -B, B+918, 419, B+918, B+838, B+918, B+838, 459, B+838, -B, 419, -B]).reshape(1, -1)
# bound = np.array([0, 0, 0, 459, 0, 918, 419, 918, 838, 918, 838, 459, 838, 0, 419, 0]).reshape(1, -1)
scale, shift = -0.005276414887140783, np.array([-475.4316, -193.53225])
elif (DEMO_CH == 'sketch'):
bound = np.array([-10000, -10000, -10000, 221, -10000, 10443, 232, 10443, 10465, 10443, 10465, 221, 10465, -10000, 232, -10000]).reshape(1, -1)
scale, shift = -0.006393177201290783, np.array([-226.8411, -176.5216])
elif (DEMO_CH == 'onepunch'):
bound = np.array([0, 0, 0, 168, 0, 337, 282, 337, 565, 337, 565, 168, 565, 0, 282, 0]).reshape(1, -1)
scale, shift = -0.007558707536598317, np.array([-301.4903, -120.05265])
elif (DEMO_CH == 'cat'):
bound = np.array([0, 0, 0, 315, 0, 631, 299, 631, 599, 631, 599, 315, 599, 0, 299, 0]).reshape(1, -1)
scale, shift = -0.009099476040795225, np.array([-297.17085, -259.2363])
elif (DEMO_CH == 'paint'):
bound = np.array([0, 0, 0, 249, 0, 499, 212, 499, 424, 499, 424, 249, 424, 0, 212, 0]).reshape(1, -1)
scale, shift = -0.007409177996872789, np.array([-161.92345878, -249.40250103])
elif (DEMO_CH == 'mulaney'):
bound = np.array([0, 0, 0, 255, 0, 511, 341, 511, 682, 511, 682, 255, 682, 0, 341, 0]).reshape(1, -1)
scale, shift = -0.010651548568731444, np.array([-333.54245, -189.081])
elif (DEMO_CH == 'cartoonM_old'):
bound = np.array([0, 0, 0, 299, 0, 599, 399, 599, 799, 599, 799, 299, 799, 0, 399, 0]).reshape(1, -1)
scale, shift = -0.0055312373170456845, np.array([-398.6125, -240.45235])
elif (DEMO_CH == 'beer'):
bound = np.array([0, 0, 0, 309, 0, 618, 260, 618, 520, 618, 520, 309, 520, 0, 260, 0]).reshape(1, -1)
scale, shift = -0.0054102709937112374, np.array([-254.1478, -156.6971])
elif (DEMO_CH == 'color'):
bound = np.array([0, 0, 0, 140, 0, 280, 249, 280, 499, 280, 499, 140, 499, 0, 249, 0]).reshape(1, -1)
scale, shift = -0.012986159189209149, np.array([-237.27065, -79.2465])
else:
if (os.path.exists(os.path.join(ROOT_DIR, DEMO_CH + '.jpg'))):
img = cv2.imread(os.path.join(ROOT_DIR, DEMO_CH + ".jpg"))
elif (os.path.exists(os.path.join(ROOT_DIR, DEMO_CH + '.png'))):
img = cv2.imread(os.path.join(ROOT_DIR, DEMO_CH + ".png"))
else:
print('not file founded.')
exit(0)
size = img.shape
h = size[1] - 1
w = size[0] - 1
bound = np.array([-B, -B,
-B, w//4,
-B, w // 2,
-B, w//4*3,
-B, B + w,
h // 2, B+w,
B+h, B+w,
B+h, w // 2,
B+h, -B,
h//4, -B,
h // 2, -B,
h//4*3, -B]).reshape(1, -1)
ss = np.loadtxt(os.path.join(ROOT_DIR, DEMO_CH + '_scale_shift.txt'))
scale, shift = ss[0], np.array([ss[1], ss[2]])
return bound, scale, shift
def close_input_face_mouth(shape_3d, p1=0.7, p2=0.5):
shape_3d = shape_3d.reshape((1, 68, 3))
index1 = list(range(60 - 1, 55 - 1, -1))
index2 = list(range(68 - 1, 65 - 1, -1))
mean_out = 0.5 * (shape_3d[:, 49:54] + shape_3d[:, index1])
mean_in = 0.5 * (shape_3d[:, 61:64] + shape_3d[:, index2])
shape_3d[:, 50:53] -= (shape_3d[:, 61:64] - mean_in) * p1
shape_3d[:, list(range(59 - 1, 56 - 1, -1))] -= (shape_3d[:, index2] - mean_in) * p1
shape_3d[:, 49] -= (shape_3d[:, 61] - mean_in[:, 0]) * p2
shape_3d[:, 53] -= (shape_3d[:, 63] - mean_in[:, -1]) * p2
shape_3d[:, 59] -= (shape_3d[:, 67] - mean_in[:, 0]) * p2
shape_3d[:, 55] -= (shape_3d[:, 65] - mean_in[:, -1]) * p2
# shape_3d[:, 61:64] = shape_3d[:, index2] = mean_in
shape_3d[:, 61:64] -= (shape_3d[:, 61:64] - mean_in) * p1
shape_3d[:, index2] -= (shape_3d[:, index2] - mean_in) * p1
shape_3d = shape_3d.reshape((68, 3))
return shape_3d
def norm_input_face(shape_3d):
scale = 1.6 / (shape_3d[0, 0] - shape_3d[16, 0])
shift = - 0.5 * (shape_3d[0, 0:2] + shape_3d[16, 0:2])
shape_3d[:, 0:2] = (shape_3d[:, 0:2] + shift) * scale
face_std = np.loadtxt('src/dataset/utils/STD_FACE_LANDMARKS.txt').reshape(68, 3)
shape_3d[:, -1] = face_std[:, -1] * 0.1
shape_3d[:, 0:2] = -shape_3d[:, 0:2]
return shape_3d, scale, shift
def add_naive_eye(fl):
for t in range(fl.shape[0]):
r = 0.95
fl[t, 37], fl[t, 41] = r * fl[t, 37] + (1 - r) * fl[t, 41], (1 - r) * fl[t, 37] + r * fl[t, 41]
fl[t, 38], fl[t, 40] = r * fl[t, 38] + (1 - r) * fl[t, 40], (1 - r) * fl[t, 38] + r * fl[t, 40]
fl[t, 43], fl[t, 47] = r * fl[t, 43] + (1 - r) * fl[t, 47], (1 - r) * fl[t, 43] + r * fl[t, 47]
fl[t, 44], fl[t, 46] = r * fl[t, 44] + (1 - r) * fl[t, 46], (1 - r) * fl[t, 44] + r * fl[t, 46]
K1, K2 = 10, 15
length = fl.shape[0]
close_time_stamp = [30]
t = 30
while (t < length - 1 - K2):
t += 60
t += np.random.randint(30, 90)
if (t < length - 1 - K2):
close_time_stamp.append(t)
for t in close_time_stamp:
fl[t, 37], fl[t, 41] = 0.25 * fl[t, 37] + 0.75 * fl[t, 41], 0.25 * fl[t, 37] + 0.75 * fl[t, 41]
fl[t, 38], fl[t, 40] = 0.25 * fl[t, 38] + 0.75 * fl[t, 40], 0.25 * fl[t, 38] + 0.75 * fl[t, 40]
fl[t, 43], fl[t, 47] = 0.25 * fl[t, 43] + 0.75 * fl[t, 47], 0.25 * fl[t, 43] + 0.75 * fl[t, 47]
fl[t, 44], fl[t, 46] = 0.25 * fl[t, 44] + 0.75 * fl[t, 46], 0.25 * fl[t, 44] + 0.75 * fl[t, 46]
def interp_fl(t0, t1, t2, r):
for index in [37, 38, 40, 41, 43, 44, 46, 47]:
fl[t0, index] = r * fl[t1, index] + (1 - r) * fl[t2, index]
for t0 in range(t - K1 + 1, t):
interp_fl(t0, t - K1, t, r=(t - t0) / 1. / K1)
for t0 in range(t + 1, t + K2):
interp_fl(t0, t, t + K2, r=(t + K2 - 1 - t0) / 1. / K2)
return fl