""" # Copyright 2020 Adobe # All Rights Reserved. # NOTICE: Adobe permits you to use, modify, and distribute this file in # accordance with the terms of the Adobe license agreement accompanying # it. """ import torch import torch.nn as nn import torch.nn.parallel import torch.utils.data import math import torch.nn.functional as F import copy import numpy as np device = torch.device("cuda" if torch.cuda.is_available() else "cpu") AUDIO_FEAT_SIZE = 161 FACE_ID_FEAT_SIZE = 204 EPSILON = 1e-40 class Embedder(nn.Module): def __init__(self, feat_size, d_model): super().__init__() self.embed = nn.Linear(feat_size, d_model) def forward(self, x): return self.embed(x) class PositionalEncoder(nn.Module): def __init__(self, d_model, max_seq_len=512): super().__init__() self.d_model = d_model # create constant 'pe' matrix with values dependant on # pos and i pe = torch.zeros(max_seq_len, d_model) for pos in range(max_seq_len): for i in range(0, d_model, 2): pe[pos, i] = \ math.sin(pos / (10000 ** ((2 * i) / d_model))) pe[pos, i + 1] = \ math.cos(pos / (10000 ** ((2 * (i + 1)) / d_model))) pe = pe.unsqueeze(0) self.register_buffer('pe', pe) def forward(self, x): # make embeddings relatively larger x = x * math.sqrt(self.d_model) # add constant to embedding seq_len = x.size(1) x = x + self.pe[:, :seq_len].clone().detach().to(device) return x def attention(q, k, v, d_k, mask=None, dropout=None): scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(d_k) if mask is not None: mask = mask.unsqueeze(1) scores = scores.masked_fill(mask == 0, -1e9) scores = F.softmax(scores, dim=-1) if dropout is not None: scores = dropout(scores) output = torch.matmul(scores, v) return output class MultiHeadAttention(nn.Module): def __init__(self, heads, d_model, dropout=0.1): super().__init__() self.d_model = d_model self.d_k = d_model // heads self.h = heads self.q_linear = nn.Linear(d_model, d_model) self.v_linear = nn.Linear(d_model, d_model) self.k_linear = nn.Linear(d_model, d_model) self.dropout = nn.Dropout(dropout) self.out = nn.Linear(d_model, d_model) def forward(self, q, k, v, mask=None): bs = q.size(0) # perform linear operation and split into h heads k = self.k_linear(k).view(bs, -1, self.h, self.d_k) q = self.q_linear(q).view(bs, -1, self.h, self.d_k) v = self.v_linear(v).view(bs, -1, self.h, self.d_k) # transpose to get dimensions bs * h * sl * d_model k = k.transpose(1, 2) q = q.transpose(1, 2) v = v.transpose(1, 2) # calculate attention using function we will define next scores = attention(q, k, v, self.d_k, mask, self.dropout) # concatenate heads and put through final linear layer concat = scores.transpose(1, 2).contiguous() \ .view(bs, -1, self.d_model) output = self.out(concat) return output class FeedForward(nn.Module): def __init__(self, d_model, d_ff=2048, dropout = 0.1): super().__init__() # We set d_ff as a default to 2048 self.linear_1 = nn.Linear(d_model, d_ff) self.dropout = nn.Dropout(dropout) self.linear_2 = nn.Linear(d_ff, d_model) def forward(self, x): x = self.dropout(F.relu(self.linear_1(x))) x = self.linear_2(x) return x class Norm(nn.Module): def __init__(self, d_model, eps=1e-6): super().__init__() self.size = d_model # create two learnable parameters to calibrate normalisation self.alpha = nn.Parameter(torch.ones(self.size)) self.bias = nn.Parameter(torch.zeros(self.size)) self.eps = eps def forward(self, x): norm = self.alpha * (x - x.mean(dim=-1, keepdim=True)) \ / (x.std(dim=-1, keepdim=True) + self.eps) + self.bias return norm # build an encoder layer with one multi-head attention layer and one # feed-forward layer class EncoderLayer(nn.Module): def __init__(self, d_model, heads, dropout=0.1): super().__init__() self.norm_1 = Norm(d_model) self.norm_2 = Norm(d_model) self.attn = MultiHeadAttention(heads, d_model) self.ff = FeedForward(d_model) self.dropout_1 = nn.Dropout(dropout) self.dropout_2 = nn.Dropout(dropout) def forward(self, x, mask): x2 = self.norm_1(x) x = x + self.dropout_1(self.attn(x2, x2, x2, mask)) x2 = self.norm_2(x) x = x + self.dropout_2(self.ff(x2)) return x # build a decoder layer with two multi-head attention layers and # one feed-forward layer class DecoderLayer(nn.Module): def __init__(self, d_model, heads, dropout=0.1): super().__init__() self.norm_1 = Norm(d_model) self.norm_2 = Norm(d_model) self.norm_3 = Norm(d_model) self.dropout_1 = nn.Dropout(dropout) self.dropout_2 = nn.Dropout(dropout) self.dropout_3 = nn.Dropout(dropout) self.attn_1 = MultiHeadAttention(heads, d_model) self.attn_2 = MultiHeadAttention(heads, d_model) self.ff = FeedForward(d_model).cuda() def forward(self, x, e_outputs, src_mask, trg_mask): x2 = self.norm_1(x) x = x + self.dropout_1(self.attn_1(x2, x2, x2, trg_mask)) x2 = self.norm_2(x) x = x + self.dropout_2(self.attn_2(x2, e_outputs, e_outputs, src_mask)) x2 = self.norm_3(x) x = x + self.dropout_3(self.ff(x2)) return x # We can then build a convenient cloning function that can generate multiple layers: def get_clones(module, N): return nn.ModuleList([copy.deepcopy(module) for i in range(N)]) class Encoder(nn.Module): def __init__(self, d_model, N, heads, in_size): super().__init__() self.N = N self.embed = Embedder(in_size, d_model) self.pe = PositionalEncoder(d_model) self.layers = get_clones(EncoderLayer(d_model, heads), N) self.norm = Norm(d_model) def forward(self, x, mask=None): x = self.embed(x) x = self.pe(x) for i in range(self.N): x = self.layers[i](x, mask) return self.norm(x) class Decoder(nn.Module): def __init__(self, d_model, N, heads, in_size): super().__init__() self.N = N self.embed = Embedder(in_size, d_model) self.pe = PositionalEncoder(d_model) self.layers = get_clones(DecoderLayer(d_model, heads), N) self.norm = Norm(d_model) def forward(self, x, e_outputs, src_mask=None, trg_mask=None): x = self.embed(x) x = self.pe(x) for i in range(self.N): x = self.layers[i](x, e_outputs, src_mask, trg_mask) return self.norm(x) class Audio2landmark_speaker_aware_old(nn.Module): def __init__(self, spk_emb_enc_size=128, transformer_d_model=32, N=2, heads=2, pos_dim=9, use_prior_net=False, is_noautovc=False): super(Audio2landmark_speaker_aware, self).__init__() self.pos_dim = pos_dim audio_feat_size = 80 if not use_prior_net else 161 audio_feat_size = 258 if is_noautovc else audio_feat_size # init audio encoder with content model self.use_prior_net = use_prior_net self.fc_prior = nn.Sequential( nn.Linear(in_features=audio_feat_size, out_features=256), nn.BatchNorm1d(256), nn.LeakyReLU(0.2), nn.Linear(256, 161), ) self.audio_feat_size = audio_feat_size self.bilstm = nn.LSTM(input_size=161, hidden_size=256, num_layers=3, dropout=0.5, bidirectional=False, batch_first=True) ''' original version ''' self.spk_emb_encoder = nn.Sequential( nn.Linear(in_features=256, out_features=256), nn.LeakyReLU(0.02), nn.Linear(256, 128), nn.LeakyReLU(0.02), nn.Linear(128, spk_emb_enc_size), ) d_model = transformer_d_model * heads N = N heads = heads self.d_model = d_model self.encoder = Encoder(d_model, N, heads, in_size=256) self.decoder = Decoder(d_model, N, heads, in_size=256) self.out_fls_2 = nn.Sequential( nn.Linear(in_features=d_model + 204, out_features=512), nn.LeakyReLU(0.02), nn.Linear(512, 256), nn.LeakyReLU(0.02), nn.Linear(256, 204), ) self.out_pos_2 = nn.Sequential( nn.Linear(in_features=d_model, out_features=32), nn.LeakyReLU(0.02), nn.Linear(32, 16), nn.LeakyReLU(0.02), nn.Linear(16, self.pos_dim), ) def forward(self, au, face_id): ''' original version ''' # audio inputs = au if (self.use_prior_net): inputs = self.fc_prior(inputs.contiguous().view(-1, self.audio_feat_size)) inputs = inputs.view(-1, 18, 161) audio_encode, (_, _) = self.bilstm(inputs) audio_encode = audio_encode[:, -1, :] # multi-attention comb_encode = audio_encode src_feat = comb_encode.unsqueeze(0) e_outputs = self.encoder(src_feat)[0] # e_outputs = comb_encode fl_input = e_outputs #[:, 0:self.d_model//4*3] pos_input = e_outputs #[:, self.d_model//4*3:] fl_input = torch.cat([fl_input, face_id], dim=1) fl_pred = self.out_fls_2(fl_input) pos_pred = self.out_pos_2(pos_input) return fl_pred, pos_pred, face_id[0:1, :], None class Audio2landmark_speaker_aware(nn.Module): def __init__(self, audio_feat_size=80, c_enc_hidden_size=256, num_layers=3, drop_out=0, spk_feat_size=256, spk_emb_enc_size=128, lstm_g_win_size=64, add_info_size=6, transformer_d_model=32, N=2, heads=2, z_size=128, audio_dim=256): super(Audio2landmark_speaker_aware, self).__init__() self.lstm_g_win_size = lstm_g_win_size self.add_info_size = add_info_size comb_mlp_size = c_enc_hidden_size * 2 self.audio_content_encoder = nn.LSTM(input_size=audio_feat_size, hidden_size=c_enc_hidden_size, num_layers=num_layers, dropout=drop_out, bidirectional=False, batch_first=True) self.use_audio_projection = not (audio_dim == c_enc_hidden_size) if(self.use_audio_projection): self.audio_projection = nn.Sequential( nn.Linear(in_features=c_enc_hidden_size, out_features=256), nn.LeakyReLU(0.02), nn.Linear(256, 128), nn.LeakyReLU(0.02), nn.Linear(128, audio_dim), ) ''' original version ''' self.spk_emb_encoder = nn.Sequential( nn.Linear(in_features=spk_feat_size, out_features=256), nn.LeakyReLU(0.02), nn.Linear(256, 128), nn.LeakyReLU(0.02), nn.Linear(128, spk_emb_enc_size), ) d_model = transformer_d_model * heads N = N heads = heads self.encoder = Encoder(d_model, N, heads, in_size=audio_dim + spk_emb_enc_size + z_size) self.decoder = Decoder(d_model, N, heads, in_size=204) self.out = nn.Sequential( nn.Linear(in_features=d_model + z_size, out_features=512), nn.LeakyReLU(0.02), nn.Linear(512, 256), nn.LeakyReLU(0.02), nn.Linear(256, 204), ) def forward(self, au, emb, face_id, add_z_spk=False, another_emb=None): # audio audio_encode, (_, _) = self.audio_content_encoder(au) audio_encode = audio_encode[:, -1, :] if(self.use_audio_projection): audio_encode = self.audio_projection(audio_encode) # spk spk_encode = self.spk_emb_encoder(emb) if(add_z_spk): z_spk = torch.tensor(torch.randn(spk_encode.shape)*0.01, requires_grad=False, dtype=torch.float).to(device) spk_encode = spk_encode + z_spk # comb z = torch.tensor(torch.zeros(au.shape[0], 128), requires_grad=False, dtype=torch.float).to(device) comb_encode = torch.cat((audio_encode, spk_encode, z), dim=1) src_feat = comb_encode.unsqueeze(0) e_outputs = self.encoder(src_feat)[0] e_outputs = torch.cat((e_outputs, z), dim=1) fl_pred = self.out(e_outputs) return fl_pred, face_id[0:1, :], spk_encode def nopeak_mask(size): np_mask = np.triu(np.ones((1, size, size)), k=1).astype('uint8') np_mask = torch.tensor(torch.from_numpy(np_mask) == 0) np_mask = np_mask.to(device) return np_mask def create_masks(src, trg): src_mask = (src != torch.zeros_like(src, requires_grad=False)) if trg is not None: size = trg.size(1) # get seq_len for matrix np_mask = nopeak_mask(size) np_mask = np_mask.to(device) trg_mask = np_mask else: trg_mask = None return src_mask, trg_mask class Transformer_DT(nn.Module): def __init__(self, transformer_d_model=32, N=2, heads=2, spk_emb_enc_size=128): super(Transformer_DT, self).__init__() d_model = transformer_d_model * heads self.encoder = Encoder(d_model, N, heads, in_size=204 + spk_emb_enc_size) self.out = nn.Sequential( nn.Linear(in_features=d_model, out_features=512), nn.LeakyReLU(0.02), nn.Linear(512, 256), nn.LeakyReLU(0.02), nn.Linear(256, 1), ) def forward(self, fls, spk_emb, win_size=64, win_step=16): feat = torch.cat((fls, spk_emb), dim=1) win_size = feat.shape[0]-1 if feat.shape[0] <= win_size else win_size D_input = [feat[i:i+win_size:win_step] for i in range(0, feat.shape[0]-win_size, win_step)] D_input = torch.stack(D_input, dim=0) D_output = self.encoder(D_input) D_output = torch.max(D_output, dim=1, keepdim=False)[0] d = self.out(D_output) # d = torch.sigmoid(d) return d class TalkingToon_spk2res_lstmgan_DT(nn.Module): def __init__(self, comb_emb_size=256, lstm_g_hidden_size=256, num_layers=3, drop_out=0, input_size=6): super(TalkingToon_spk2res_lstmgan_DT, self).__init__() self.fl_DT = nn.GRU(input_size=comb_emb_size + FACE_ID_FEAT_SIZE, hidden_size=lstm_g_hidden_size, num_layers=3, dropout=0, bidirectional=False, batch_first=True) self.projection = nn.Sequential( nn.Linear(in_features=lstm_g_hidden_size, out_features=512), nn.LeakyReLU(0.02), nn.Linear(512, 256), nn.LeakyReLU(0.02), nn.Linear(256, 1), ) self.maxpool = nn.MaxPool1d(4, 1) def forward(self, comb_encode, fls, win_size=32, win_step=1): feat = torch.cat((comb_encode, fls), dim=1) # v # feat = torch.cat((comb_encode[0:-1], fls[1:] - fls[0:-1]), dim=1) # max pooling feat = feat.transpose(0, 1).unsqueeze(0) feat = self.maxpool(feat) feat = feat[0].transpose(0, 1) win_size = feat.shape[0] - 1 if feat.shape[0] <= win_size else win_size D_input = [feat[i:i+win_size:win_step] for i in range(0, feat.shape[0]-win_size)] D_input = torch.stack(D_input, dim=0) D_output, _ = self.fl_DT(D_input) D_output = D_output[:, -1, :] d = self.projection(D_output) # d = torch.sigmoid(d) return d