VinitT commited on
Commit
b7f30a4
1 Parent(s): 16d8c6e

End of training

Browse files
Files changed (2) hide show
  1. README.md +151 -0
  2. adapter_model.bin +3 -0
README.md ADDED
@@ -0,0 +1,151 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: meta-llama/Meta-Llama-3-8B
3
+ library_name: peft
4
+ license: llama3
5
+ tags:
6
+ - axolotl
7
+ - generated_from_trainer
8
+ model-index:
9
+ - name: Sanskrit-llama
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
17
+ <details><summary>See axolotl config</summary>
18
+
19
+ axolotl version: `0.4.1`
20
+ ```yaml
21
+
22
+ base_model: meta-llama/Meta-Llama-3-8B
23
+ model_type: AutoModelForCausalLM
24
+ tokenizer_type: AutoTokenizer
25
+ max_steps:
26
+ bnb_config_kwargs:
27
+ llm_int8_has_fp16_weight: false
28
+ bnb_4bit_quant_type: nf4
29
+ bnb_4bit_use_double_quant: true
30
+
31
+ load_in_8bit: false
32
+ load_in_4bit: true
33
+ strict: false
34
+
35
+ datasets:
36
+ - path: VinitT/Sanskrit-Llama_Base-Dataset
37
+ type: alpaca
38
+ dataset_prepared_path:
39
+ val_set_size: 0
40
+ output_dir: ./outputs/qlora-out
41
+ chat_template: chatml
42
+ hub_model_id: VinitT/Sanskrit-llama
43
+ hf_use_auth_token: true
44
+ adapter: qlora
45
+ lora_model_dir:
46
+
47
+ sequence_len: 512
48
+ sample_packing: true
49
+ eval_sample_packing: false
50
+ pad_to_sequence_len: true
51
+
52
+ lora_r: 32
53
+ lora_alpha: 16
54
+ lora_dropout: 0.05
55
+ lora_target_modules:
56
+ lora_target_linear: true
57
+ lora_fan_in_fan_out:
58
+
59
+ gradient_accumulation_steps: 4
60
+ micro_batch_size: 1
61
+ num_epochs: 1
62
+ optimizer: paged_adamw_8bit
63
+ lr_scheduler: cosine
64
+ cosine_min_lr_ratio: 0.2
65
+ learning_rate: 1e-5
66
+
67
+ train_on_inputs: false
68
+ group_by_length: false
69
+ bf16: false
70
+ fp16:
71
+ tf32: false
72
+
73
+ gradient_checkpointing: true
74
+ early_stopping_patience:
75
+ resume_from_checkpoint:
76
+ local_rank:
77
+ logging_steps: 1
78
+ xformers_attention:
79
+ flash_attention: false
80
+
81
+ warmup_steps: 10
82
+ evals_per_epoch: 4
83
+ saves_per_epoch: 1
84
+ debug:
85
+ deepspeed:
86
+ weight_decay: 0.0
87
+ #fsdp:
88
+ # - full_shard
89
+ # - auto_wrap
90
+ #fsdp_config:
91
+ # fsdp_limit_all_gathers: true
92
+ # fsdp_sync_module_states: true
93
+ # fsdp_offload_params: true
94
+ # fsdp_use_orig_params: false
95
+ # fsdp_cpu_ram_efficient_loading: true
96
+ # fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
97
+ # fsdp_transformer_layer_cls_to_wrap: LlamaDecoderLayer
98
+ # fsdp_state_dict_type: FULL_STATE_DICT
99
+ special_tokens:
100
+ pad_token: "<|end_of_text|>"
101
+
102
+ ```
103
+
104
+ </details><br>
105
+
106
+ # Sanskrit-llama
107
+
108
+ This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) on the None dataset.
109
+
110
+ ## Model description
111
+
112
+ More information needed
113
+
114
+ ## Intended uses & limitations
115
+
116
+ More information needed
117
+
118
+ ## Training and evaluation data
119
+
120
+ More information needed
121
+
122
+ ## Training procedure
123
+
124
+ ### Training hyperparameters
125
+
126
+ The following hyperparameters were used during training:
127
+ - learning_rate: 1e-05
128
+ - train_batch_size: 1
129
+ - eval_batch_size: 1
130
+ - seed: 42
131
+ - distributed_type: multi-GPU
132
+ - num_devices: 2
133
+ - gradient_accumulation_steps: 4
134
+ - total_train_batch_size: 8
135
+ - total_eval_batch_size: 2
136
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
137
+ - lr_scheduler_type: cosine
138
+ - lr_scheduler_warmup_steps: 10
139
+ - num_epochs: 1
140
+
141
+ ### Training results
142
+
143
+
144
+
145
+ ### Framework versions
146
+
147
+ - PEFT 0.11.1
148
+ - Transformers 4.42.4
149
+ - Pytorch 2.1.2
150
+ - Datasets 2.19.1
151
+ - Tokenizers 0.19.1
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:edd5bc684e9aa3a4c5c15a52b0c30141c5f5c72b9792ae1623a05343de59d833
3
+ size 167843194