# src/model.py import torch import torch.nn as nn class NCFModel(nn.Module): def __init__(self, num_users, num_items, embedding_size=50): """ Initialize the NCF model with embedding layers and fully connected layers. Args: num_users (int): Total number of unique users. num_items (int): Total number of unique items. embedding_size (int): Size of the embedding vectors. """ super(NCFModel, self).__init__() self.user_embedding = nn.Embedding(num_users, embedding_size) self.item_embedding = nn.Embedding(num_items, embedding_size) self.fc1 = nn.Linear(embedding_size * 2, 128) self.dropout1 = nn.Dropout(0.5) self.fc2 = nn.Linear(128, 64) self.dropout2 = nn.Dropout(0.5) self.output_layer = nn.Linear(64, 1) def forward(self, user, item): """ Forward pass through the model. Args: user (torch.LongTensor): Tensor of user IDs. item (torch.LongTensor): Tensor of item IDs. Returns: torch.Tensor: Output logits indicating interaction likelihood. """ user_emb = self.user_embedding(user) item_emb = self.item_embedding(item) x = torch.cat([user_emb, item_emb], dim=1) x = torch.relu(self.fc1(x)) x = self.dropout1(x) x = torch.relu(self.fc2(x)) x = self.dropout2(x) x = self.output_layer(x) # No sigmoid here; handled in loss function return x.squeeze()