Vishal24 commited on
Commit
1f4e243
1 Parent(s): 795b3b3

Push model using huggingface_hub.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,725 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Vishal24/bert-1ds-domain
3
+ datasets:
4
+ - Vishal24/BCG_classifier
5
+ library_name: setfit
6
+ metrics:
7
+ - f1
8
+ pipeline_tag: text-classification
9
+ tags:
10
+ - setfit
11
+ - sentence-transformers
12
+ - text-classification
13
+ - generated_from_setfit_trainer
14
+ widget:
15
+ - text: fair and handsome 100 oil clear face wash
16
+ - text: hazelnut
17
+ - text: aqualohica body mist
18
+ - text: joy body lotion 300 ml
19
+ - text: top of browse listings page
20
+ inference: true
21
+ model-index:
22
+ - name: SetFit with Vishal24/bert-1ds-domain
23
+ results:
24
+ - task:
25
+ type: text-classification
26
+ name: Text Classification
27
+ dataset:
28
+ name: Vishal24/BCG_classifier
29
+ type: Vishal24/BCG_classifier
30
+ split: test
31
+ metrics:
32
+ - type: f1
33
+ value: 0.9233278955954323
34
+ name: F1
35
+ ---
36
+
37
+ # SetFit with Vishal24/bert-1ds-domain
38
+
39
+ This is a [SetFit](https://github.com/huggingface/setfit) model trained on the [Vishal24/BCG_classifier](https://huggingface.co/datasets/Vishal24/BCG_classifier) dataset that can be used for Text Classification. This SetFit model uses [Vishal24/bert-1ds-domain](https://huggingface.co/Vishal24/bert-1ds-domain) as the Sentence Transformer embedding model. A [SetFitHead](huggingface.co/docs/setfit/reference/main#setfit.SetFitHead) instance is used for classification.
40
+
41
+ The model has been trained using an efficient few-shot learning technique that involves:
42
+
43
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
44
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
45
+
46
+ ## Model Details
47
+
48
+ ### Model Description
49
+ - **Model Type:** SetFit
50
+ - **Sentence Transformer body:** [Vishal24/bert-1ds-domain](https://huggingface.co/Vishal24/bert-1ds-domain)
51
+ - **Classification head:** a [SetFitHead](huggingface.co/docs/setfit/reference/main#setfit.SetFitHead) instance
52
+ - **Maximum Sequence Length:** 512 tokens
53
+ - **Number of Classes:** 2 classes
54
+ - **Training Dataset:** [Vishal24/BCG_classifier](https://huggingface.co/datasets/Vishal24/BCG_classifier)
55
+ <!-- - **Language:** Unknown -->
56
+ <!-- - **License:** Unknown -->
57
+
58
+ ### Model Sources
59
+
60
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
61
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
62
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
63
+
64
+ ### Model Labels
65
+ | Label | Examples |
66
+ |:------|:-------------------------------------------------------------------------------------------------------------------------------------------|
67
+ | 0 | <ul><li>'mois'</li><li>'time skincare soap'</li><li>'paraben free'</li></ul> |
68
+ | 1 | <ul><li>'tomato ketchup 1kg flipkart'</li><li>'sunsilk keratin yogurt shampoo lusciously thick long'</li><li>'wow aloevera soap'</li></ul> |
69
+
70
+ ## Evaluation
71
+
72
+ ### Metrics
73
+ | Label | F1 |
74
+ |:--------|:-------|
75
+ | **all** | 0.9233 |
76
+
77
+ ## Uses
78
+
79
+ ### Direct Use for Inference
80
+
81
+ First install the SetFit library:
82
+
83
+ ```bash
84
+ pip install setfit
85
+ ```
86
+
87
+ Then you can load this model and run inference.
88
+
89
+ ```python
90
+ from setfit import SetFitModel
91
+
92
+ # Download from the 🤗 Hub
93
+ model = SetFitModel.from_pretrained("Vishal24/BCG-classifier")
94
+ # Run inference
95
+ preds = model("hazelnut")
96
+ ```
97
+
98
+ <!--
99
+ ### Downstream Use
100
+
101
+ *List how someone could finetune this model on their own dataset.*
102
+ -->
103
+
104
+ <!--
105
+ ### Out-of-Scope Use
106
+
107
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
108
+ -->
109
+
110
+ <!--
111
+ ## Bias, Risks and Limitations
112
+
113
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
114
+ -->
115
+
116
+ <!--
117
+ ### Recommendations
118
+
119
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
120
+ -->
121
+
122
+ ## Training Details
123
+
124
+ ### Training Set Metrics
125
+ | Training set | Min | Median | Max |
126
+ |:-------------|:----|:-------|:----|
127
+ | Word count | 1 | 3.4474 | 19 |
128
+
129
+ | Label | Training Sample Count |
130
+ |:------|:----------------------|
131
+ | 0 | 2252 |
132
+ | 1 | 1262 |
133
+
134
+ ### Training Hyperparameters
135
+ - batch_size: (16, 2)
136
+ - num_epochs: (3, 3)
137
+ - max_steps: -1
138
+ - sampling_strategy: oversampling
139
+ - num_iterations: 20
140
+ - body_learning_rate: (2e-05, 1e-05)
141
+ - head_learning_rate: 0.01
142
+ - loss: CosineSimilarityLoss
143
+ - distance_metric: cosine_distance
144
+ - margin: 0.25
145
+ - end_to_end: False
146
+ - use_amp: False
147
+ - warmup_proportion: 0.1
148
+ - seed: 42
149
+ - eval_max_steps: -1
150
+ - load_best_model_at_end: False
151
+
152
+ ### Training Results
153
+ | Epoch | Step | Training Loss | Validation Loss |
154
+ |:------:|:-----:|:-------------:|:---------------:|
155
+ | 0.0001 | 1 | 0.2765 | - |
156
+ | 0.0057 | 50 | 0.2529 | - |
157
+ | 0.0114 | 100 | 0.252 | - |
158
+ | 0.0171 | 150 | 0.2657 | - |
159
+ | 0.0228 | 200 | 0.2735 | - |
160
+ | 0.0285 | 250 | 0.236 | - |
161
+ | 0.0341 | 300 | 0.2366 | - |
162
+ | 0.0398 | 350 | 0.2316 | - |
163
+ | 0.0455 | 400 | 0.185 | - |
164
+ | 0.0512 | 450 | 0.1396 | - |
165
+ | 0.0569 | 500 | 0.2137 | - |
166
+ | 0.0626 | 550 | 0.093 | - |
167
+ | 0.0683 | 600 | 0.1219 | - |
168
+ | 0.0740 | 650 | 0.0974 | - |
169
+ | 0.0797 | 700 | 0.2257 | - |
170
+ | 0.0854 | 750 | 0.0951 | - |
171
+ | 0.0911 | 800 | 0.0994 | - |
172
+ | 0.0968 | 850 | 0.0752 | - |
173
+ | 0.1024 | 900 | 0.0848 | - |
174
+ | 0.1081 | 950 | 0.015 | - |
175
+ | 0.1138 | 1000 | 0.0541 | - |
176
+ | 0.1195 | 1050 | 0.0357 | - |
177
+ | 0.1252 | 1100 | 0.0314 | - |
178
+ | 0.1309 | 1150 | 0.0557 | - |
179
+ | 0.1366 | 1200 | 0.0027 | - |
180
+ | 0.1423 | 1250 | 0.0387 | - |
181
+ | 0.1480 | 1300 | 0.0026 | - |
182
+ | 0.1537 | 1350 | 0.044 | - |
183
+ | 0.1594 | 1400 | 0.0499 | - |
184
+ | 0.1651 | 1450 | 0.001 | - |
185
+ | 0.1707 | 1500 | 0.0007 | - |
186
+ | 0.1764 | 1550 | 0.0008 | - |
187
+ | 0.1821 | 1600 | 0.0009 | - |
188
+ | 0.1878 | 1650 | 0.053 | - |
189
+ | 0.1935 | 1700 | 0.1111 | - |
190
+ | 0.1992 | 1750 | 0.0018 | - |
191
+ | 0.2049 | 1800 | 0.0009 | - |
192
+ | 0.2106 | 1850 | 0.0008 | - |
193
+ | 0.2163 | 1900 | 0.0011 | - |
194
+ | 0.2220 | 1950 | 0.0042 | - |
195
+ | 0.2277 | 2000 | 0.0005 | - |
196
+ | 0.2334 | 2050 | 0.0023 | - |
197
+ | 0.2390 | 2100 | 0.0003 | - |
198
+ | 0.2447 | 2150 | 0.0004 | - |
199
+ | 0.2504 | 2200 | 0.055 | - |
200
+ | 0.2561 | 2250 | 0.0584 | - |
201
+ | 0.2618 | 2300 | 0.06 | - |
202
+ | 0.2675 | 2350 | 0.0004 | - |
203
+ | 0.2732 | 2400 | 0.0022 | - |
204
+ | 0.2789 | 2450 | 0.0005 | - |
205
+ | 0.2846 | 2500 | 0.0014 | - |
206
+ | 0.2903 | 2550 | 0.0008 | - |
207
+ | 0.2960 | 2600 | 0.0004 | - |
208
+ | 0.3017 | 2650 | 0.0118 | - |
209
+ | 0.3073 | 2700 | 0.0892 | - |
210
+ | 0.3130 | 2750 | 0.0004 | - |
211
+ | 0.3187 | 2800 | 0.0061 | - |
212
+ | 0.3244 | 2850 | 0.0601 | - |
213
+ | 0.3301 | 2900 | 0.0003 | - |
214
+ | 0.3358 | 2950 | 0.0007 | - |
215
+ | 0.3415 | 3000 | 0.0006 | - |
216
+ | 0.3472 | 3050 | 0.0002 | - |
217
+ | 0.3529 | 3100 | 0.0002 | - |
218
+ | 0.3586 | 3150 | 0.0005 | - |
219
+ | 0.3643 | 3200 | 0.0003 | - |
220
+ | 0.3699 | 3250 | 0.0002 | - |
221
+ | 0.3756 | 3300 | 0.0008 | - |
222
+ | 0.3813 | 3350 | 0.0002 | - |
223
+ | 0.3870 | 3400 | 0.0513 | - |
224
+ | 0.3927 | 3450 | 0.0003 | - |
225
+ | 0.3984 | 3500 | 0.0002 | - |
226
+ | 0.4041 | 3550 | 0.0006 | - |
227
+ | 0.4098 | 3600 | 0.0005 | - |
228
+ | 0.4155 | 3650 | 0.0003 | - |
229
+ | 0.4212 | 3700 | 0.0002 | - |
230
+ | 0.4269 | 3750 | 0.0002 | - |
231
+ | 0.4326 | 3800 | 0.0005 | - |
232
+ | 0.4382 | 3850 | 0.0001 | - |
233
+ | 0.4439 | 3900 | 0.0002 | - |
234
+ | 0.4496 | 3950 | 0.0001 | - |
235
+ | 0.4553 | 4000 | 0.0003 | - |
236
+ | 0.4610 | 4050 | 0.0001 | - |
237
+ | 0.4667 | 4100 | 0.0595 | - |
238
+ | 0.4724 | 4150 | 0.0002 | - |
239
+ | 0.4781 | 4200 | 0.0001 | - |
240
+ | 0.4838 | 4250 | 0.0002 | - |
241
+ | 0.4895 | 4300 | 0.0001 | - |
242
+ | 0.4952 | 4350 | 0.0002 | - |
243
+ | 0.5009 | 4400 | 0.0001 | - |
244
+ | 0.5065 | 4450 | 0.0001 | - |
245
+ | 0.5122 | 4500 | 0.0002 | - |
246
+ | 0.5179 | 4550 | 0.0001 | - |
247
+ | 0.5236 | 4600 | 0.0014 | - |
248
+ | 0.5293 | 4650 | 0.0001 | - |
249
+ | 0.5350 | 4700 | 0.0001 | - |
250
+ | 0.5407 | 4750 | 0.0002 | - |
251
+ | 0.5464 | 4800 | 0.0001 | - |
252
+ | 0.5521 | 4850 | 0.0419 | - |
253
+ | 0.5578 | 4900 | 0.0001 | - |
254
+ | 0.5635 | 4950 | 0.0001 | - |
255
+ | 0.5692 | 5000 | 0.0001 | - |
256
+ | 0.5748 | 5050 | 0.0001 | - |
257
+ | 0.5805 | 5100 | 0.0001 | - |
258
+ | 0.5862 | 5150 | 0.0001 | - |
259
+ | 0.5919 | 5200 | 0.0001 | - |
260
+ | 0.5976 | 5250 | 0.0001 | - |
261
+ | 0.6033 | 5300 | 0.0001 | - |
262
+ | 0.6090 | 5350 | 0.0001 | - |
263
+ | 0.6147 | 5400 | 0.0 | - |
264
+ | 0.6204 | 5450 | 0.0 | - |
265
+ | 0.6261 | 5500 | 0.0001 | - |
266
+ | 0.6318 | 5550 | 0.0 | - |
267
+ | 0.6375 | 5600 | 0.0001 | - |
268
+ | 0.6431 | 5650 | 0.0001 | - |
269
+ | 0.6488 | 5700 | 0.0006 | - |
270
+ | 0.6545 | 5750 | 0.0001 | - |
271
+ | 0.6602 | 5800 | 0.0001 | - |
272
+ | 0.6659 | 5850 | 0.0001 | - |
273
+ | 0.6716 | 5900 | 0.0001 | - |
274
+ | 0.6773 | 5950 | 0.0001 | - |
275
+ | 0.6830 | 6000 | 0.0002 | - |
276
+ | 0.6887 | 6050 | 0.0002 | - |
277
+ | 0.6944 | 6100 | 0.0001 | - |
278
+ | 0.7001 | 6150 | 0.0001 | - |
279
+ | 0.7057 | 6200 | 0.0001 | - |
280
+ | 0.7114 | 6250 | 0.0 | - |
281
+ | 0.7171 | 6300 | 0.0001 | - |
282
+ | 0.7228 | 6350 | 0.0001 | - |
283
+ | 0.7285 | 6400 | 0.0001 | - |
284
+ | 0.7342 | 6450 | 0.0001 | - |
285
+ | 0.7399 | 6500 | 0.0002 | - |
286
+ | 0.7456 | 6550 | 0.0001 | - |
287
+ | 0.7513 | 6600 | 0.0001 | - |
288
+ | 0.7570 | 6650 | 0.0 | - |
289
+ | 0.7627 | 6700 | 0.0001 | - |
290
+ | 0.7684 | 6750 | 0.0001 | - |
291
+ | 0.7740 | 6800 | 0.0001 | - |
292
+ | 0.7797 | 6850 | 0.0003 | - |
293
+ | 0.7854 | 6900 | 0.0515 | - |
294
+ | 0.7911 | 6950 | 0.0001 | - |
295
+ | 0.7968 | 7000 | 0.0003 | - |
296
+ | 0.8025 | 7050 | 0.0001 | - |
297
+ | 0.8082 | 7100 | 0.0001 | - |
298
+ | 0.8139 | 7150 | 0.0001 | - |
299
+ | 0.8196 | 7200 | 0.0 | - |
300
+ | 0.8253 | 7250 | 0.0001 | - |
301
+ | 0.8310 | 7300 | 0.0 | - |
302
+ | 0.8367 | 7350 | 0.0001 | - |
303
+ | 0.8423 | 7400 | 0.0001 | - |
304
+ | 0.8480 | 7450 | 0.0001 | - |
305
+ | 0.8537 | 7500 | 0.0001 | - |
306
+ | 0.8594 | 7550 | 0.0 | - |
307
+ | 0.8651 | 7600 | 0.0 | - |
308
+ | 0.8708 | 7650 | 0.0 | - |
309
+ | 0.8765 | 7700 | 0.0 | - |
310
+ | 0.8822 | 7750 | 0.0014 | - |
311
+ | 0.8879 | 7800 | 0.0001 | - |
312
+ | 0.8936 | 7850 | 0.0001 | - |
313
+ | 0.8993 | 7900 | 0.0 | - |
314
+ | 0.9050 | 7950 | 0.0001 | - |
315
+ | 0.9106 | 8000 | 0.0002 | - |
316
+ | 0.9163 | 8050 | 0.0001 | - |
317
+ | 0.9220 | 8100 | 0.0 | - |
318
+ | 0.9277 | 8150 | 0.0 | - |
319
+ | 0.9334 | 8200 | 0.0001 | - |
320
+ | 0.9391 | 8250 | 0.0 | - |
321
+ | 0.9448 | 8300 | 0.0001 | - |
322
+ | 0.9505 | 8350 | 0.0004 | - |
323
+ | 0.9562 | 8400 | 0.0001 | - |
324
+ | 0.9619 | 8450 | 0.0 | - |
325
+ | 0.9676 | 8500 | 0.001 | - |
326
+ | 0.9732 | 8550 | 0.0001 | - |
327
+ | 0.9789 | 8600 | 0.0001 | - |
328
+ | 0.9846 | 8650 | 0.0 | - |
329
+ | 0.9903 | 8700 | 0.0 | - |
330
+ | 0.9960 | 8750 | 0.0001 | - |
331
+ | 1.0017 | 8800 | 0.0002 | - |
332
+ | 1.0074 | 8850 | 0.0 | - |
333
+ | 1.0131 | 8900 | 0.0 | - |
334
+ | 1.0188 | 8950 | 0.0 | - |
335
+ | 1.0245 | 9000 | 0.0001 | - |
336
+ | 1.0302 | 9050 | 0.0 | - |
337
+ | 1.0359 | 9100 | 0.0 | - |
338
+ | 1.0415 | 9150 | 0.0 | - |
339
+ | 1.0472 | 9200 | 0.0 | - |
340
+ | 1.0529 | 9250 | 0.0 | - |
341
+ | 1.0586 | 9300 | 0.0 | - |
342
+ | 1.0643 | 9350 | 0.0 | - |
343
+ | 1.0700 | 9400 | 0.0001 | - |
344
+ | 1.0757 | 9450 | 0.0 | - |
345
+ | 1.0814 | 9500 | 0.0 | - |
346
+ | 1.0871 | 9550 | 0.0 | - |
347
+ | 1.0928 | 9600 | 0.0 | - |
348
+ | 1.0985 | 9650 | 0.0 | - |
349
+ | 1.1042 | 9700 | 0.0001 | - |
350
+ | 1.1098 | 9750 | 0.0002 | - |
351
+ | 1.1155 | 9800 | 0.0097 | - |
352
+ | 1.1212 | 9850 | 0.0 | - |
353
+ | 1.1269 | 9900 | 0.0 | - |
354
+ | 1.1326 | 9950 | 0.0001 | - |
355
+ | 1.1383 | 10000 | 0.0 | - |
356
+ | 1.1440 | 10050 | 0.0 | - |
357
+ | 1.1497 | 10100 | 0.0001 | - |
358
+ | 1.1554 | 10150 | 0.0004 | - |
359
+ | 1.1611 | 10200 | 0.0 | - |
360
+ | 1.1668 | 10250 | 0.0 | - |
361
+ | 1.1725 | 10300 | 0.0 | - |
362
+ | 1.1781 | 10350 | 0.0 | - |
363
+ | 1.1838 | 10400 | 0.0001 | - |
364
+ | 1.1895 | 10450 | 0.0 | - |
365
+ | 1.1952 | 10500 | 0.0 | - |
366
+ | 1.2009 | 10550 | 0.0 | - |
367
+ | 1.2066 | 10600 | 0.0 | - |
368
+ | 1.2123 | 10650 | 0.0 | - |
369
+ | 1.2180 | 10700 | 0.0001 | - |
370
+ | 1.2237 | 10750 | 0.0 | - |
371
+ | 1.2294 | 10800 | 0.0 | - |
372
+ | 1.2351 | 10850 | 0.0001 | - |
373
+ | 1.2408 | 10900 | 0.0305 | - |
374
+ | 1.2464 | 10950 | 0.0617 | - |
375
+ | 1.2521 | 11000 | 0.0 | - |
376
+ | 1.2578 | 11050 | 0.0 | - |
377
+ | 1.2635 | 11100 | 0.0 | - |
378
+ | 1.2692 | 11150 | 0.0 | - |
379
+ | 1.2749 | 11200 | 0.0 | - |
380
+ | 1.2806 | 11250 | 0.0 | - |
381
+ | 1.2863 | 11300 | 0.0 | - |
382
+ | 1.2920 | 11350 | 0.0 | - |
383
+ | 1.2977 | 11400 | 0.0 | - |
384
+ | 1.3034 | 11450 | 0.0 | - |
385
+ | 1.3090 | 11500 | 0.0 | - |
386
+ | 1.3147 | 11550 | 0.0 | - |
387
+ | 1.3204 | 11600 | 0.0 | - |
388
+ | 1.3261 | 11650 | 0.0 | - |
389
+ | 1.3318 | 11700 | 0.0 | - |
390
+ | 1.3375 | 11750 | 0.0 | - |
391
+ | 1.3432 | 11800 | 0.0 | - |
392
+ | 1.3489 | 11850 | 0.0 | - |
393
+ | 1.3546 | 11900 | 0.0 | - |
394
+ | 1.3603 | 11950 | 0.0 | - |
395
+ | 1.3660 | 12000 | 0.0 | - |
396
+ | 1.3717 | 12050 | 0.0 | - |
397
+ | 1.3773 | 12100 | 0.0 | - |
398
+ | 1.3830 | 12150 | 0.0 | - |
399
+ | 1.3887 | 12200 | 0.0 | - |
400
+ | 1.3944 | 12250 | 0.0 | - |
401
+ | 1.4001 | 12300 | 0.0 | - |
402
+ | 1.4058 | 12350 | 0.0 | - |
403
+ | 1.4115 | 12400 | 0.0 | - |
404
+ | 1.4172 | 12450 | 0.0 | - |
405
+ | 1.4229 | 12500 | 0.0 | - |
406
+ | 1.4286 | 12550 | 0.0 | - |
407
+ | 1.4343 | 12600 | 0.0 | - |
408
+ | 1.4400 | 12650 | 0.0 | - |
409
+ | 1.4456 | 12700 | 0.0 | - |
410
+ | 1.4513 | 12750 | 0.0 | - |
411
+ | 1.4570 | 12800 | 0.0 | - |
412
+ | 1.4627 | 12850 | 0.0 | - |
413
+ | 1.4684 | 12900 | 0.0 | - |
414
+ | 1.4741 | 12950 | 0.0 | - |
415
+ | 1.4798 | 13000 | 0.0 | - |
416
+ | 1.4855 | 13050 | 0.0 | - |
417
+ | 1.4912 | 13100 | 0.0 | - |
418
+ | 1.4969 | 13150 | 0.0001 | - |
419
+ | 1.5026 | 13200 | 0.0 | - |
420
+ | 1.5083 | 13250 | 0.0 | - |
421
+ | 1.5139 | 13300 | 0.0 | - |
422
+ | 1.5196 | 13350 | 0.0 | - |
423
+ | 1.5253 | 13400 | 0.0 | - |
424
+ | 1.5310 | 13450 | 0.0 | - |
425
+ | 1.5367 | 13500 | 0.0001 | - |
426
+ | 1.5424 | 13550 | 0.0 | - |
427
+ | 1.5481 | 13600 | 0.0 | - |
428
+ | 1.5538 | 13650 | 0.0 | - |
429
+ | 1.5595 | 13700 | 0.0001 | - |
430
+ | 1.5652 | 13750 | 0.0001 | - |
431
+ | 1.5709 | 13800 | 0.0 | - |
432
+ | 1.5766 | 13850 | 0.0001 | - |
433
+ | 1.5822 | 13900 | 0.0 | - |
434
+ | 1.5879 | 13950 | 0.0 | - |
435
+ | 1.5936 | 14000 | 0.0 | - |
436
+ | 1.5993 | 14050 | 0.0 | - |
437
+ | 1.6050 | 14100 | 0.0 | - |
438
+ | 1.6107 | 14150 | 0.0 | - |
439
+ | 1.6164 | 14200 | 0.0 | - |
440
+ | 1.6221 | 14250 | 0.0 | - |
441
+ | 1.6278 | 14300 | 0.0 | - |
442
+ | 1.6335 | 14350 | 0.0 | - |
443
+ | 1.6392 | 14400 | 0.0 | - |
444
+ | 1.6448 | 14450 | 0.0 | - |
445
+ | 1.6505 | 14500 | 0.0 | - |
446
+ | 1.6562 | 14550 | 0.0 | - |
447
+ | 1.6619 | 14600 | 0.0 | - |
448
+ | 1.6676 | 14650 | 0.0 | - |
449
+ | 1.6733 | 14700 | 0.0 | - |
450
+ | 1.6790 | 14750 | 0.0 | - |
451
+ | 1.6847 | 14800 | 0.0 | - |
452
+ | 1.6904 | 14850 | 0.0 | - |
453
+ | 1.6961 | 14900 | 0.0 | - |
454
+ | 1.7018 | 14950 | 0.0 | - |
455
+ | 1.7075 | 15000 | 0.0 | - |
456
+ | 1.7131 | 15050 | 0.0 | - |
457
+ | 1.7188 | 15100 | 0.0 | - |
458
+ | 1.7245 | 15150 | 0.0001 | - |
459
+ | 1.7302 | 15200 | 0.0 | - |
460
+ | 1.7359 | 15250 | 0.0 | - |
461
+ | 1.7416 | 15300 | 0.0002 | - |
462
+ | 1.7473 | 15350 | 0.0 | - |
463
+ | 1.7530 | 15400 | 0.0 | - |
464
+ | 1.7587 | 15450 | 0.0 | - |
465
+ | 1.7644 | 15500 | 0.0 | - |
466
+ | 1.7701 | 15550 | 0.0 | - |
467
+ | 1.7758 | 15600 | 0.0 | - |
468
+ | 1.7814 | 15650 | 0.0 | - |
469
+ | 1.7871 | 15700 | 0.0 | - |
470
+ | 1.7928 | 15750 | 0.0 | - |
471
+ | 1.7985 | 15800 | 0.0 | - |
472
+ | 1.8042 | 15850 | 0.0 | - |
473
+ | 1.8099 | 15900 | 0.0 | - |
474
+ | 1.8156 | 15950 | 0.0 | - |
475
+ | 1.8213 | 16000 | 0.0 | - |
476
+ | 1.8270 | 16050 | 0.0 | - |
477
+ | 1.8327 | 16100 | 0.0 | - |
478
+ | 1.8384 | 16150 | 0.0001 | - |
479
+ | 1.8441 | 16200 | 0.0 | - |
480
+ | 1.8497 | 16250 | 0.0 | - |
481
+ | 1.8554 | 16300 | 0.0 | - |
482
+ | 1.8611 | 16350 | 0.0 | - |
483
+ | 1.8668 | 16400 | 0.0 | - |
484
+ | 1.8725 | 16450 | 0.0 | - |
485
+ | 1.8782 | 16500 | 0.0 | - |
486
+ | 1.8839 | 16550 | 0.0 | - |
487
+ | 1.8896 | 16600 | 0.0 | - |
488
+ | 1.8953 | 16650 | 0.0 | - |
489
+ | 1.9010 | 16700 | 0.0 | - |
490
+ | 1.9067 | 16750 | 0.0 | - |
491
+ | 1.9124 | 16800 | 0.0 | - |
492
+ | 1.9180 | 16850 | 0.0 | - |
493
+ | 1.9237 | 16900 | 0.0 | - |
494
+ | 1.9294 | 16950 | 0.0 | - |
495
+ | 1.9351 | 17000 | 0.0 | - |
496
+ | 1.9408 | 17050 | 0.0 | - |
497
+ | 1.9465 | 17100 | 0.0 | - |
498
+ | 1.9522 | 17150 | 0.0 | - |
499
+ | 1.9579 | 17200 | 0.0 | - |
500
+ | 1.9636 | 17250 | 0.0 | - |
501
+ | 1.9693 | 17300 | 0.0 | - |
502
+ | 1.9750 | 17350 | 0.0 | - |
503
+ | 1.9806 | 17400 | 0.0 | - |
504
+ | 1.9863 | 17450 | 0.0 | - |
505
+ | 1.9920 | 17500 | 0.0 | - |
506
+ | 1.9977 | 17550 | 0.0 | - |
507
+ | 2.0034 | 17600 | 0.0 | - |
508
+ | 2.0091 | 17650 | 0.0 | - |
509
+ | 2.0148 | 17700 | 0.0 | - |
510
+ | 2.0205 | 17750 | 0.0 | - |
511
+ | 2.0262 | 17800 | 0.0 | - |
512
+ | 2.0319 | 17850 | 0.0523 | - |
513
+ | 2.0376 | 17900 | 0.0 | - |
514
+ | 2.0433 | 17950 | 0.0 | - |
515
+ | 2.0489 | 18000 | 0.0 | - |
516
+ | 2.0546 | 18050 | 0.0 | - |
517
+ | 2.0603 | 18100 | 0.0 | - |
518
+ | 2.0660 | 18150 | 0.0 | - |
519
+ | 2.0717 | 18200 | 0.0 | - |
520
+ | 2.0774 | 18250 | 0.0 | - |
521
+ | 2.0831 | 18300 | 0.0 | - |
522
+ | 2.0888 | 18350 | 0.0 | - |
523
+ | 2.0945 | 18400 | 0.0 | - |
524
+ | 2.1002 | 18450 | 0.0 | - |
525
+ | 2.1059 | 18500 | 0.0 | - |
526
+ | 2.1116 | 18550 | 0.0 | - |
527
+ | 2.1172 | 18600 | 0.0 | - |
528
+ | 2.1229 | 18650 | 0.0 | - |
529
+ | 2.1286 | 18700 | 0.0 | - |
530
+ | 2.1343 | 18750 | 0.0 | - |
531
+ | 2.1400 | 18800 | 0.0 | - |
532
+ | 2.1457 | 18850 | 0.0 | - |
533
+ | 2.1514 | 18900 | 0.0 | - |
534
+ | 2.1571 | 18950 | 0.0 | - |
535
+ | 2.1628 | 19000 | 0.0 | - |
536
+ | 2.1685 | 19050 | 0.0 | - |
537
+ | 2.1742 | 19100 | 0.0 | - |
538
+ | 2.1799 | 19150 | 0.0 | - |
539
+ | 2.1855 | 19200 | 0.0 | - |
540
+ | 2.1912 | 19250 | 0.0 | - |
541
+ | 2.1969 | 19300 | 0.0 | - |
542
+ | 2.2026 | 19350 | 0.0 | - |
543
+ | 2.2083 | 19400 | 0.0 | - |
544
+ | 2.2140 | 19450 | 0.0 | - |
545
+ | 2.2197 | 19500 | 0.0 | - |
546
+ | 2.2254 | 19550 | 0.0 | - |
547
+ | 2.2311 | 19600 | 0.0 | - |
548
+ | 2.2368 | 19650 | 0.0 | - |
549
+ | 2.2425 | 19700 | 0.0 | - |
550
+ | 2.2482 | 19750 | 0.0 | - |
551
+ | 2.2538 | 19800 | 0.0 | - |
552
+ | 2.2595 | 19850 | 0.0 | - |
553
+ | 2.2652 | 19900 | 0.0 | - |
554
+ | 2.2709 | 19950 | 0.0 | - |
555
+ | 2.2766 | 20000 | 0.0 | - |
556
+ | 2.2823 | 20050 | 0.0 | - |
557
+ | 2.2880 | 20100 | 0.0 | - |
558
+ | 2.2937 | 20150 | 0.0 | - |
559
+ | 2.2994 | 20200 | 0.0 | - |
560
+ | 2.3051 | 20250 | 0.0 | - |
561
+ | 2.3108 | 20300 | 0.0 | - |
562
+ | 2.3164 | 20350 | 0.0 | - |
563
+ | 2.3221 | 20400 | 0.0 | - |
564
+ | 2.3278 | 20450 | 0.0 | - |
565
+ | 2.3335 | 20500 | 0.0 | - |
566
+ | 2.3392 | 20550 | 0.0 | - |
567
+ | 2.3449 | 20600 | 0.0 | - |
568
+ | 2.3506 | 20650 | 0.0 | - |
569
+ | 2.3563 | 20700 | 0.0 | - |
570
+ | 2.3620 | 20750 | 0.0 | - |
571
+ | 2.3677 | 20800 | 0.0 | - |
572
+ | 2.3734 | 20850 | 0.0 | - |
573
+ | 2.3791 | 20900 | 0.0 | - |
574
+ | 2.3847 | 20950 | 0.0 | - |
575
+ | 2.3904 | 21000 | 0.0 | - |
576
+ | 2.3961 | 21050 | 0.0 | - |
577
+ | 2.4018 | 21100 | 0.0 | - |
578
+ | 2.4075 | 21150 | 0.0 | - |
579
+ | 2.4132 | 21200 | 0.0 | - |
580
+ | 2.4189 | 21250 | 0.0 | - |
581
+ | 2.4246 | 21300 | 0.0 | - |
582
+ | 2.4303 | 21350 | 0.0 | - |
583
+ | 2.4360 | 21400 | 0.0 | - |
584
+ | 2.4417 | 21450 | 0.0 | - |
585
+ | 2.4474 | 21500 | 0.0 | - |
586
+ | 2.4530 | 21550 | 0.0 | - |
587
+ | 2.4587 | 21600 | 0.0 | - |
588
+ | 2.4644 | 21650 | 0.0 | - |
589
+ | 2.4701 | 21700 | 0.0 | - |
590
+ | 2.4758 | 21750 | 0.0 | - |
591
+ | 2.4815 | 21800 | 0.0 | - |
592
+ | 2.4872 | 21850 | 0.0 | - |
593
+ | 2.4929 | 21900 | 0.0 | - |
594
+ | 2.4986 | 21950 | 0.0 | - |
595
+ | 2.5043 | 22000 | 0.0 | - |
596
+ | 2.5100 | 22050 | 0.0 | - |
597
+ | 2.5157 | 22100 | 0.0 | - |
598
+ | 2.5213 | 22150 | 0.0 | - |
599
+ | 2.5270 | 22200 | 0.0 | - |
600
+ | 2.5327 | 22250 | 0.0 | - |
601
+ | 2.5384 | 22300 | 0.0 | - |
602
+ | 2.5441 | 22350 | 0.0 | - |
603
+ | 2.5498 | 22400 | 0.0 | - |
604
+ | 2.5555 | 22450 | 0.0 | - |
605
+ | 2.5612 | 22500 | 0.0 | - |
606
+ | 2.5669 | 22550 | 0.0 | - |
607
+ | 2.5726 | 22600 | 0.0 | - |
608
+ | 2.5783 | 22650 | 0.0 | - |
609
+ | 2.5839 | 22700 | 0.0 | - |
610
+ | 2.5896 | 22750 | 0.0 | - |
611
+ | 2.5953 | 22800 | 0.0 | - |
612
+ | 2.6010 | 22850 | 0.0 | - |
613
+ | 2.6067 | 22900 | 0.0 | - |
614
+ | 2.6124 | 22950 | 0.0 | - |
615
+ | 2.6181 | 23000 | 0.0 | - |
616
+ | 2.6238 | 23050 | 0.0 | - |
617
+ | 2.6295 | 23100 | 0.0 | - |
618
+ | 2.6352 | 23150 | 0.0 | - |
619
+ | 2.6409 | 23200 | 0.0 | - |
620
+ | 2.6466 | 23250 | 0.0 | - |
621
+ | 2.6522 | 23300 | 0.0 | - |
622
+ | 2.6579 | 23350 | 0.0 | - |
623
+ | 2.6636 | 23400 | 0.0 | - |
624
+ | 2.6693 | 23450 | 0.0 | - |
625
+ | 2.6750 | 23500 | 0.0 | - |
626
+ | 2.6807 | 23550 | 0.0 | - |
627
+ | 2.6864 | 23600 | 0.0 | - |
628
+ | 2.6921 | 23650 | 0.0 | - |
629
+ | 2.6978 | 23700 | 0.0 | - |
630
+ | 2.7035 | 23750 | 0.0 | - |
631
+ | 2.7092 | 23800 | 0.0 | - |
632
+ | 2.7149 | 23850 | 0.0 | - |
633
+ | 2.7205 | 23900 | 0.0 | - |
634
+ | 2.7262 | 23950 | 0.0 | - |
635
+ | 2.7319 | 24000 | 0.0 | - |
636
+ | 2.7376 | 24050 | 0.0 | - |
637
+ | 2.7433 | 24100 | 0.0 | - |
638
+ | 2.7490 | 24150 | 0.0 | - |
639
+ | 2.7547 | 24200 | 0.0 | - |
640
+ | 2.7604 | 24250 | 0.0 | - |
641
+ | 2.7661 | 24300 | 0.0 | - |
642
+ | 2.7718 | 24350 | 0.0 | - |
643
+ | 2.7775 | 24400 | 0.0 | - |
644
+ | 2.7832 | 24450 | 0.0 | - |
645
+ | 2.7888 | 24500 | 0.0 | - |
646
+ | 2.7945 | 24550 | 0.0 | - |
647
+ | 2.8002 | 24600 | 0.0 | - |
648
+ | 2.8059 | 24650 | 0.0 | - |
649
+ | 2.8116 | 24700 | 0.0 | - |
650
+ | 2.8173 | 24750 | 0.0 | - |
651
+ | 2.8230 | 24800 | 0.0 | - |
652
+ | 2.8287 | 24850 | 0.0 | - |
653
+ | 2.8344 | 24900 | 0.0 | - |
654
+ | 2.8401 | 24950 | 0.0 | - |
655
+ | 2.8458 | 25000 | 0.0 | - |
656
+ | 2.8515 | 25050 | 0.0 | - |
657
+ | 2.8571 | 25100 | 0.0 | - |
658
+ | 2.8628 | 25150 | 0.0 | - |
659
+ | 2.8685 | 25200 | 0.0 | - |
660
+ | 2.8742 | 25250 | 0.0 | - |
661
+ | 2.8799 | 25300 | 0.0 | - |
662
+ | 2.8856 | 25350 | 0.0 | - |
663
+ | 2.8913 | 25400 | 0.0 | - |
664
+ | 2.8970 | 25450 | 0.0 | - |
665
+ | 2.9027 | 25500 | 0.0 | - |
666
+ | 2.9084 | 25550 | 0.0 | - |
667
+ | 2.9141 | 25600 | 0.0 | - |
668
+ | 2.9197 | 25650 | 0.0 | - |
669
+ | 2.9254 | 25700 | 0.0 | - |
670
+ | 2.9311 | 25750 | 0.0 | - |
671
+ | 2.9368 | 25800 | 0.0 | - |
672
+ | 2.9425 | 25850 | 0.0 | - |
673
+ | 2.9482 | 25900 | 0.0 | - |
674
+ | 2.9539 | 25950 | 0.0 | - |
675
+ | 2.9596 | 26000 | 0.0 | - |
676
+ | 2.9653 | 26050 | 0.0 | - |
677
+ | 2.9710 | 26100 | 0.0 | - |
678
+ | 2.9767 | 26150 | 0.0 | - |
679
+ | 2.9824 | 26200 | 0.0 | - |
680
+ | 2.9880 | 26250 | 0.0 | - |
681
+ | 2.9937 | 26300 | 0.0 | - |
682
+ | 2.9994 | 26350 | 0.0 | - |
683
+
684
+ ### Framework Versions
685
+ - Python: 3.10.12
686
+ - SetFit: 1.0.3
687
+ - Sentence Transformers: 3.3.1
688
+ - Transformers: 4.41.2
689
+ - PyTorch: 2.1.0+cu118
690
+ - Datasets: 2.20.0
691
+ - Tokenizers: 0.19.1
692
+
693
+ ## Citation
694
+
695
+ ### BibTeX
696
+ ```bibtex
697
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
698
+ doi = {10.48550/ARXIV.2209.11055},
699
+ url = {https://arxiv.org/abs/2209.11055},
700
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
701
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
702
+ title = {Efficient Few-Shot Learning Without Prompts},
703
+ publisher = {arXiv},
704
+ year = {2022},
705
+ copyright = {Creative Commons Attribution 4.0 International}
706
+ }
707
+ ```
708
+
709
+ <!--
710
+ ## Glossary
711
+
712
+ *Clearly define terms in order to be accessible across audiences.*
713
+ -->
714
+
715
+ <!--
716
+ ## Model Card Authors
717
+
718
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
719
+ -->
720
+
721
+ <!--
722
+ ## Model Card Contact
723
+
724
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
725
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Vishal24/bert-1ds-domain",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.41.2",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 28996
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.1.0+cu118"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "labels": null,
3
+ "normalize_embeddings": false
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cb72fb325d9595011f1fdbc318e34266a2366f6da7c60640eb7a7976a5d778c7
3
+ size 433263448
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ea6c2073e905d151536e9ff785815de9ea1920cc777d82d47a2775dd3970b26e
3
+ size 7702
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": false,
47
+ "mask_token": "[MASK]",
48
+ "model_max_length": 512,
49
+ "pad_token": "[PAD]",
50
+ "sep_token": "[SEP]",
51
+ "strip_accents": null,
52
+ "tokenize_chinese_chars": true,
53
+ "tokenizer_class": "BertTokenizer",
54
+ "unk_token": "[UNK]"
55
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff