Push model using huggingface_hub.
Browse files- 1_Pooling/config.json +10 -0
- README.md +725 -0
- config.json +26 -0
- config_sentence_transformers.json +10 -0
- config_setfit.json +4 -0
- model.safetensors +3 -0
- model_head.pkl +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +55 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,725 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: Vishal24/bert-1ds-domain
|
3 |
+
datasets:
|
4 |
+
- Vishal24/BCG_classifier
|
5 |
+
library_name: setfit
|
6 |
+
metrics:
|
7 |
+
- f1
|
8 |
+
pipeline_tag: text-classification
|
9 |
+
tags:
|
10 |
+
- setfit
|
11 |
+
- sentence-transformers
|
12 |
+
- text-classification
|
13 |
+
- generated_from_setfit_trainer
|
14 |
+
widget:
|
15 |
+
- text: fair and handsome 100 oil clear face wash
|
16 |
+
- text: hazelnut
|
17 |
+
- text: aqualohica body mist
|
18 |
+
- text: joy body lotion 300 ml
|
19 |
+
- text: top of browse listings page
|
20 |
+
inference: true
|
21 |
+
model-index:
|
22 |
+
- name: SetFit with Vishal24/bert-1ds-domain
|
23 |
+
results:
|
24 |
+
- task:
|
25 |
+
type: text-classification
|
26 |
+
name: Text Classification
|
27 |
+
dataset:
|
28 |
+
name: Vishal24/BCG_classifier
|
29 |
+
type: Vishal24/BCG_classifier
|
30 |
+
split: test
|
31 |
+
metrics:
|
32 |
+
- type: f1
|
33 |
+
value: 0.9233278955954323
|
34 |
+
name: F1
|
35 |
+
---
|
36 |
+
|
37 |
+
# SetFit with Vishal24/bert-1ds-domain
|
38 |
+
|
39 |
+
This is a [SetFit](https://github.com/huggingface/setfit) model trained on the [Vishal24/BCG_classifier](https://huggingface.co/datasets/Vishal24/BCG_classifier) dataset that can be used for Text Classification. This SetFit model uses [Vishal24/bert-1ds-domain](https://huggingface.co/Vishal24/bert-1ds-domain) as the Sentence Transformer embedding model. A [SetFitHead](huggingface.co/docs/setfit/reference/main#setfit.SetFitHead) instance is used for classification.
|
40 |
+
|
41 |
+
The model has been trained using an efficient few-shot learning technique that involves:
|
42 |
+
|
43 |
+
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
44 |
+
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
45 |
+
|
46 |
+
## Model Details
|
47 |
+
|
48 |
+
### Model Description
|
49 |
+
- **Model Type:** SetFit
|
50 |
+
- **Sentence Transformer body:** [Vishal24/bert-1ds-domain](https://huggingface.co/Vishal24/bert-1ds-domain)
|
51 |
+
- **Classification head:** a [SetFitHead](huggingface.co/docs/setfit/reference/main#setfit.SetFitHead) instance
|
52 |
+
- **Maximum Sequence Length:** 512 tokens
|
53 |
+
- **Number of Classes:** 2 classes
|
54 |
+
- **Training Dataset:** [Vishal24/BCG_classifier](https://huggingface.co/datasets/Vishal24/BCG_classifier)
|
55 |
+
<!-- - **Language:** Unknown -->
|
56 |
+
<!-- - **License:** Unknown -->
|
57 |
+
|
58 |
+
### Model Sources
|
59 |
+
|
60 |
+
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
|
61 |
+
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
62 |
+
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
63 |
+
|
64 |
+
### Model Labels
|
65 |
+
| Label | Examples |
|
66 |
+
|:------|:-------------------------------------------------------------------------------------------------------------------------------------------|
|
67 |
+
| 0 | <ul><li>'mois'</li><li>'time skincare soap'</li><li>'paraben free'</li></ul> |
|
68 |
+
| 1 | <ul><li>'tomato ketchup 1kg flipkart'</li><li>'sunsilk keratin yogurt shampoo lusciously thick long'</li><li>'wow aloevera soap'</li></ul> |
|
69 |
+
|
70 |
+
## Evaluation
|
71 |
+
|
72 |
+
### Metrics
|
73 |
+
| Label | F1 |
|
74 |
+
|:--------|:-------|
|
75 |
+
| **all** | 0.9233 |
|
76 |
+
|
77 |
+
## Uses
|
78 |
+
|
79 |
+
### Direct Use for Inference
|
80 |
+
|
81 |
+
First install the SetFit library:
|
82 |
+
|
83 |
+
```bash
|
84 |
+
pip install setfit
|
85 |
+
```
|
86 |
+
|
87 |
+
Then you can load this model and run inference.
|
88 |
+
|
89 |
+
```python
|
90 |
+
from setfit import SetFitModel
|
91 |
+
|
92 |
+
# Download from the 🤗 Hub
|
93 |
+
model = SetFitModel.from_pretrained("Vishal24/BCG-classifier")
|
94 |
+
# Run inference
|
95 |
+
preds = model("hazelnut")
|
96 |
+
```
|
97 |
+
|
98 |
+
<!--
|
99 |
+
### Downstream Use
|
100 |
+
|
101 |
+
*List how someone could finetune this model on their own dataset.*
|
102 |
+
-->
|
103 |
+
|
104 |
+
<!--
|
105 |
+
### Out-of-Scope Use
|
106 |
+
|
107 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
108 |
+
-->
|
109 |
+
|
110 |
+
<!--
|
111 |
+
## Bias, Risks and Limitations
|
112 |
+
|
113 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
114 |
+
-->
|
115 |
+
|
116 |
+
<!--
|
117 |
+
### Recommendations
|
118 |
+
|
119 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
120 |
+
-->
|
121 |
+
|
122 |
+
## Training Details
|
123 |
+
|
124 |
+
### Training Set Metrics
|
125 |
+
| Training set | Min | Median | Max |
|
126 |
+
|:-------------|:----|:-------|:----|
|
127 |
+
| Word count | 1 | 3.4474 | 19 |
|
128 |
+
|
129 |
+
| Label | Training Sample Count |
|
130 |
+
|:------|:----------------------|
|
131 |
+
| 0 | 2252 |
|
132 |
+
| 1 | 1262 |
|
133 |
+
|
134 |
+
### Training Hyperparameters
|
135 |
+
- batch_size: (16, 2)
|
136 |
+
- num_epochs: (3, 3)
|
137 |
+
- max_steps: -1
|
138 |
+
- sampling_strategy: oversampling
|
139 |
+
- num_iterations: 20
|
140 |
+
- body_learning_rate: (2e-05, 1e-05)
|
141 |
+
- head_learning_rate: 0.01
|
142 |
+
- loss: CosineSimilarityLoss
|
143 |
+
- distance_metric: cosine_distance
|
144 |
+
- margin: 0.25
|
145 |
+
- end_to_end: False
|
146 |
+
- use_amp: False
|
147 |
+
- warmup_proportion: 0.1
|
148 |
+
- seed: 42
|
149 |
+
- eval_max_steps: -1
|
150 |
+
- load_best_model_at_end: False
|
151 |
+
|
152 |
+
### Training Results
|
153 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
154 |
+
|:------:|:-----:|:-------------:|:---------------:|
|
155 |
+
| 0.0001 | 1 | 0.2765 | - |
|
156 |
+
| 0.0057 | 50 | 0.2529 | - |
|
157 |
+
| 0.0114 | 100 | 0.252 | - |
|
158 |
+
| 0.0171 | 150 | 0.2657 | - |
|
159 |
+
| 0.0228 | 200 | 0.2735 | - |
|
160 |
+
| 0.0285 | 250 | 0.236 | - |
|
161 |
+
| 0.0341 | 300 | 0.2366 | - |
|
162 |
+
| 0.0398 | 350 | 0.2316 | - |
|
163 |
+
| 0.0455 | 400 | 0.185 | - |
|
164 |
+
| 0.0512 | 450 | 0.1396 | - |
|
165 |
+
| 0.0569 | 500 | 0.2137 | - |
|
166 |
+
| 0.0626 | 550 | 0.093 | - |
|
167 |
+
| 0.0683 | 600 | 0.1219 | - |
|
168 |
+
| 0.0740 | 650 | 0.0974 | - |
|
169 |
+
| 0.0797 | 700 | 0.2257 | - |
|
170 |
+
| 0.0854 | 750 | 0.0951 | - |
|
171 |
+
| 0.0911 | 800 | 0.0994 | - |
|
172 |
+
| 0.0968 | 850 | 0.0752 | - |
|
173 |
+
| 0.1024 | 900 | 0.0848 | - |
|
174 |
+
| 0.1081 | 950 | 0.015 | - |
|
175 |
+
| 0.1138 | 1000 | 0.0541 | - |
|
176 |
+
| 0.1195 | 1050 | 0.0357 | - |
|
177 |
+
| 0.1252 | 1100 | 0.0314 | - |
|
178 |
+
| 0.1309 | 1150 | 0.0557 | - |
|
179 |
+
| 0.1366 | 1200 | 0.0027 | - |
|
180 |
+
| 0.1423 | 1250 | 0.0387 | - |
|
181 |
+
| 0.1480 | 1300 | 0.0026 | - |
|
182 |
+
| 0.1537 | 1350 | 0.044 | - |
|
183 |
+
| 0.1594 | 1400 | 0.0499 | - |
|
184 |
+
| 0.1651 | 1450 | 0.001 | - |
|
185 |
+
| 0.1707 | 1500 | 0.0007 | - |
|
186 |
+
| 0.1764 | 1550 | 0.0008 | - |
|
187 |
+
| 0.1821 | 1600 | 0.0009 | - |
|
188 |
+
| 0.1878 | 1650 | 0.053 | - |
|
189 |
+
| 0.1935 | 1700 | 0.1111 | - |
|
190 |
+
| 0.1992 | 1750 | 0.0018 | - |
|
191 |
+
| 0.2049 | 1800 | 0.0009 | - |
|
192 |
+
| 0.2106 | 1850 | 0.0008 | - |
|
193 |
+
| 0.2163 | 1900 | 0.0011 | - |
|
194 |
+
| 0.2220 | 1950 | 0.0042 | - |
|
195 |
+
| 0.2277 | 2000 | 0.0005 | - |
|
196 |
+
| 0.2334 | 2050 | 0.0023 | - |
|
197 |
+
| 0.2390 | 2100 | 0.0003 | - |
|
198 |
+
| 0.2447 | 2150 | 0.0004 | - |
|
199 |
+
| 0.2504 | 2200 | 0.055 | - |
|
200 |
+
| 0.2561 | 2250 | 0.0584 | - |
|
201 |
+
| 0.2618 | 2300 | 0.06 | - |
|
202 |
+
| 0.2675 | 2350 | 0.0004 | - |
|
203 |
+
| 0.2732 | 2400 | 0.0022 | - |
|
204 |
+
| 0.2789 | 2450 | 0.0005 | - |
|
205 |
+
| 0.2846 | 2500 | 0.0014 | - |
|
206 |
+
| 0.2903 | 2550 | 0.0008 | - |
|
207 |
+
| 0.2960 | 2600 | 0.0004 | - |
|
208 |
+
| 0.3017 | 2650 | 0.0118 | - |
|
209 |
+
| 0.3073 | 2700 | 0.0892 | - |
|
210 |
+
| 0.3130 | 2750 | 0.0004 | - |
|
211 |
+
| 0.3187 | 2800 | 0.0061 | - |
|
212 |
+
| 0.3244 | 2850 | 0.0601 | - |
|
213 |
+
| 0.3301 | 2900 | 0.0003 | - |
|
214 |
+
| 0.3358 | 2950 | 0.0007 | - |
|
215 |
+
| 0.3415 | 3000 | 0.0006 | - |
|
216 |
+
| 0.3472 | 3050 | 0.0002 | - |
|
217 |
+
| 0.3529 | 3100 | 0.0002 | - |
|
218 |
+
| 0.3586 | 3150 | 0.0005 | - |
|
219 |
+
| 0.3643 | 3200 | 0.0003 | - |
|
220 |
+
| 0.3699 | 3250 | 0.0002 | - |
|
221 |
+
| 0.3756 | 3300 | 0.0008 | - |
|
222 |
+
| 0.3813 | 3350 | 0.0002 | - |
|
223 |
+
| 0.3870 | 3400 | 0.0513 | - |
|
224 |
+
| 0.3927 | 3450 | 0.0003 | - |
|
225 |
+
| 0.3984 | 3500 | 0.0002 | - |
|
226 |
+
| 0.4041 | 3550 | 0.0006 | - |
|
227 |
+
| 0.4098 | 3600 | 0.0005 | - |
|
228 |
+
| 0.4155 | 3650 | 0.0003 | - |
|
229 |
+
| 0.4212 | 3700 | 0.0002 | - |
|
230 |
+
| 0.4269 | 3750 | 0.0002 | - |
|
231 |
+
| 0.4326 | 3800 | 0.0005 | - |
|
232 |
+
| 0.4382 | 3850 | 0.0001 | - |
|
233 |
+
| 0.4439 | 3900 | 0.0002 | - |
|
234 |
+
| 0.4496 | 3950 | 0.0001 | - |
|
235 |
+
| 0.4553 | 4000 | 0.0003 | - |
|
236 |
+
| 0.4610 | 4050 | 0.0001 | - |
|
237 |
+
| 0.4667 | 4100 | 0.0595 | - |
|
238 |
+
| 0.4724 | 4150 | 0.0002 | - |
|
239 |
+
| 0.4781 | 4200 | 0.0001 | - |
|
240 |
+
| 0.4838 | 4250 | 0.0002 | - |
|
241 |
+
| 0.4895 | 4300 | 0.0001 | - |
|
242 |
+
| 0.4952 | 4350 | 0.0002 | - |
|
243 |
+
| 0.5009 | 4400 | 0.0001 | - |
|
244 |
+
| 0.5065 | 4450 | 0.0001 | - |
|
245 |
+
| 0.5122 | 4500 | 0.0002 | - |
|
246 |
+
| 0.5179 | 4550 | 0.0001 | - |
|
247 |
+
| 0.5236 | 4600 | 0.0014 | - |
|
248 |
+
| 0.5293 | 4650 | 0.0001 | - |
|
249 |
+
| 0.5350 | 4700 | 0.0001 | - |
|
250 |
+
| 0.5407 | 4750 | 0.0002 | - |
|
251 |
+
| 0.5464 | 4800 | 0.0001 | - |
|
252 |
+
| 0.5521 | 4850 | 0.0419 | - |
|
253 |
+
| 0.5578 | 4900 | 0.0001 | - |
|
254 |
+
| 0.5635 | 4950 | 0.0001 | - |
|
255 |
+
| 0.5692 | 5000 | 0.0001 | - |
|
256 |
+
| 0.5748 | 5050 | 0.0001 | - |
|
257 |
+
| 0.5805 | 5100 | 0.0001 | - |
|
258 |
+
| 0.5862 | 5150 | 0.0001 | - |
|
259 |
+
| 0.5919 | 5200 | 0.0001 | - |
|
260 |
+
| 0.5976 | 5250 | 0.0001 | - |
|
261 |
+
| 0.6033 | 5300 | 0.0001 | - |
|
262 |
+
| 0.6090 | 5350 | 0.0001 | - |
|
263 |
+
| 0.6147 | 5400 | 0.0 | - |
|
264 |
+
| 0.6204 | 5450 | 0.0 | - |
|
265 |
+
| 0.6261 | 5500 | 0.0001 | - |
|
266 |
+
| 0.6318 | 5550 | 0.0 | - |
|
267 |
+
| 0.6375 | 5600 | 0.0001 | - |
|
268 |
+
| 0.6431 | 5650 | 0.0001 | - |
|
269 |
+
| 0.6488 | 5700 | 0.0006 | - |
|
270 |
+
| 0.6545 | 5750 | 0.0001 | - |
|
271 |
+
| 0.6602 | 5800 | 0.0001 | - |
|
272 |
+
| 0.6659 | 5850 | 0.0001 | - |
|
273 |
+
| 0.6716 | 5900 | 0.0001 | - |
|
274 |
+
| 0.6773 | 5950 | 0.0001 | - |
|
275 |
+
| 0.6830 | 6000 | 0.0002 | - |
|
276 |
+
| 0.6887 | 6050 | 0.0002 | - |
|
277 |
+
| 0.6944 | 6100 | 0.0001 | - |
|
278 |
+
| 0.7001 | 6150 | 0.0001 | - |
|
279 |
+
| 0.7057 | 6200 | 0.0001 | - |
|
280 |
+
| 0.7114 | 6250 | 0.0 | - |
|
281 |
+
| 0.7171 | 6300 | 0.0001 | - |
|
282 |
+
| 0.7228 | 6350 | 0.0001 | - |
|
283 |
+
| 0.7285 | 6400 | 0.0001 | - |
|
284 |
+
| 0.7342 | 6450 | 0.0001 | - |
|
285 |
+
| 0.7399 | 6500 | 0.0002 | - |
|
286 |
+
| 0.7456 | 6550 | 0.0001 | - |
|
287 |
+
| 0.7513 | 6600 | 0.0001 | - |
|
288 |
+
| 0.7570 | 6650 | 0.0 | - |
|
289 |
+
| 0.7627 | 6700 | 0.0001 | - |
|
290 |
+
| 0.7684 | 6750 | 0.0001 | - |
|
291 |
+
| 0.7740 | 6800 | 0.0001 | - |
|
292 |
+
| 0.7797 | 6850 | 0.0003 | - |
|
293 |
+
| 0.7854 | 6900 | 0.0515 | - |
|
294 |
+
| 0.7911 | 6950 | 0.0001 | - |
|
295 |
+
| 0.7968 | 7000 | 0.0003 | - |
|
296 |
+
| 0.8025 | 7050 | 0.0001 | - |
|
297 |
+
| 0.8082 | 7100 | 0.0001 | - |
|
298 |
+
| 0.8139 | 7150 | 0.0001 | - |
|
299 |
+
| 0.8196 | 7200 | 0.0 | - |
|
300 |
+
| 0.8253 | 7250 | 0.0001 | - |
|
301 |
+
| 0.8310 | 7300 | 0.0 | - |
|
302 |
+
| 0.8367 | 7350 | 0.0001 | - |
|
303 |
+
| 0.8423 | 7400 | 0.0001 | - |
|
304 |
+
| 0.8480 | 7450 | 0.0001 | - |
|
305 |
+
| 0.8537 | 7500 | 0.0001 | - |
|
306 |
+
| 0.8594 | 7550 | 0.0 | - |
|
307 |
+
| 0.8651 | 7600 | 0.0 | - |
|
308 |
+
| 0.8708 | 7650 | 0.0 | - |
|
309 |
+
| 0.8765 | 7700 | 0.0 | - |
|
310 |
+
| 0.8822 | 7750 | 0.0014 | - |
|
311 |
+
| 0.8879 | 7800 | 0.0001 | - |
|
312 |
+
| 0.8936 | 7850 | 0.0001 | - |
|
313 |
+
| 0.8993 | 7900 | 0.0 | - |
|
314 |
+
| 0.9050 | 7950 | 0.0001 | - |
|
315 |
+
| 0.9106 | 8000 | 0.0002 | - |
|
316 |
+
| 0.9163 | 8050 | 0.0001 | - |
|
317 |
+
| 0.9220 | 8100 | 0.0 | - |
|
318 |
+
| 0.9277 | 8150 | 0.0 | - |
|
319 |
+
| 0.9334 | 8200 | 0.0001 | - |
|
320 |
+
| 0.9391 | 8250 | 0.0 | - |
|
321 |
+
| 0.9448 | 8300 | 0.0001 | - |
|
322 |
+
| 0.9505 | 8350 | 0.0004 | - |
|
323 |
+
| 0.9562 | 8400 | 0.0001 | - |
|
324 |
+
| 0.9619 | 8450 | 0.0 | - |
|
325 |
+
| 0.9676 | 8500 | 0.001 | - |
|
326 |
+
| 0.9732 | 8550 | 0.0001 | - |
|
327 |
+
| 0.9789 | 8600 | 0.0001 | - |
|
328 |
+
| 0.9846 | 8650 | 0.0 | - |
|
329 |
+
| 0.9903 | 8700 | 0.0 | - |
|
330 |
+
| 0.9960 | 8750 | 0.0001 | - |
|
331 |
+
| 1.0017 | 8800 | 0.0002 | - |
|
332 |
+
| 1.0074 | 8850 | 0.0 | - |
|
333 |
+
| 1.0131 | 8900 | 0.0 | - |
|
334 |
+
| 1.0188 | 8950 | 0.0 | - |
|
335 |
+
| 1.0245 | 9000 | 0.0001 | - |
|
336 |
+
| 1.0302 | 9050 | 0.0 | - |
|
337 |
+
| 1.0359 | 9100 | 0.0 | - |
|
338 |
+
| 1.0415 | 9150 | 0.0 | - |
|
339 |
+
| 1.0472 | 9200 | 0.0 | - |
|
340 |
+
| 1.0529 | 9250 | 0.0 | - |
|
341 |
+
| 1.0586 | 9300 | 0.0 | - |
|
342 |
+
| 1.0643 | 9350 | 0.0 | - |
|
343 |
+
| 1.0700 | 9400 | 0.0001 | - |
|
344 |
+
| 1.0757 | 9450 | 0.0 | - |
|
345 |
+
| 1.0814 | 9500 | 0.0 | - |
|
346 |
+
| 1.0871 | 9550 | 0.0 | - |
|
347 |
+
| 1.0928 | 9600 | 0.0 | - |
|
348 |
+
| 1.0985 | 9650 | 0.0 | - |
|
349 |
+
| 1.1042 | 9700 | 0.0001 | - |
|
350 |
+
| 1.1098 | 9750 | 0.0002 | - |
|
351 |
+
| 1.1155 | 9800 | 0.0097 | - |
|
352 |
+
| 1.1212 | 9850 | 0.0 | - |
|
353 |
+
| 1.1269 | 9900 | 0.0 | - |
|
354 |
+
| 1.1326 | 9950 | 0.0001 | - |
|
355 |
+
| 1.1383 | 10000 | 0.0 | - |
|
356 |
+
| 1.1440 | 10050 | 0.0 | - |
|
357 |
+
| 1.1497 | 10100 | 0.0001 | - |
|
358 |
+
| 1.1554 | 10150 | 0.0004 | - |
|
359 |
+
| 1.1611 | 10200 | 0.0 | - |
|
360 |
+
| 1.1668 | 10250 | 0.0 | - |
|
361 |
+
| 1.1725 | 10300 | 0.0 | - |
|
362 |
+
| 1.1781 | 10350 | 0.0 | - |
|
363 |
+
| 1.1838 | 10400 | 0.0001 | - |
|
364 |
+
| 1.1895 | 10450 | 0.0 | - |
|
365 |
+
| 1.1952 | 10500 | 0.0 | - |
|
366 |
+
| 1.2009 | 10550 | 0.0 | - |
|
367 |
+
| 1.2066 | 10600 | 0.0 | - |
|
368 |
+
| 1.2123 | 10650 | 0.0 | - |
|
369 |
+
| 1.2180 | 10700 | 0.0001 | - |
|
370 |
+
| 1.2237 | 10750 | 0.0 | - |
|
371 |
+
| 1.2294 | 10800 | 0.0 | - |
|
372 |
+
| 1.2351 | 10850 | 0.0001 | - |
|
373 |
+
| 1.2408 | 10900 | 0.0305 | - |
|
374 |
+
| 1.2464 | 10950 | 0.0617 | - |
|
375 |
+
| 1.2521 | 11000 | 0.0 | - |
|
376 |
+
| 1.2578 | 11050 | 0.0 | - |
|
377 |
+
| 1.2635 | 11100 | 0.0 | - |
|
378 |
+
| 1.2692 | 11150 | 0.0 | - |
|
379 |
+
| 1.2749 | 11200 | 0.0 | - |
|
380 |
+
| 1.2806 | 11250 | 0.0 | - |
|
381 |
+
| 1.2863 | 11300 | 0.0 | - |
|
382 |
+
| 1.2920 | 11350 | 0.0 | - |
|
383 |
+
| 1.2977 | 11400 | 0.0 | - |
|
384 |
+
| 1.3034 | 11450 | 0.0 | - |
|
385 |
+
| 1.3090 | 11500 | 0.0 | - |
|
386 |
+
| 1.3147 | 11550 | 0.0 | - |
|
387 |
+
| 1.3204 | 11600 | 0.0 | - |
|
388 |
+
| 1.3261 | 11650 | 0.0 | - |
|
389 |
+
| 1.3318 | 11700 | 0.0 | - |
|
390 |
+
| 1.3375 | 11750 | 0.0 | - |
|
391 |
+
| 1.3432 | 11800 | 0.0 | - |
|
392 |
+
| 1.3489 | 11850 | 0.0 | - |
|
393 |
+
| 1.3546 | 11900 | 0.0 | - |
|
394 |
+
| 1.3603 | 11950 | 0.0 | - |
|
395 |
+
| 1.3660 | 12000 | 0.0 | - |
|
396 |
+
| 1.3717 | 12050 | 0.0 | - |
|
397 |
+
| 1.3773 | 12100 | 0.0 | - |
|
398 |
+
| 1.3830 | 12150 | 0.0 | - |
|
399 |
+
| 1.3887 | 12200 | 0.0 | - |
|
400 |
+
| 1.3944 | 12250 | 0.0 | - |
|
401 |
+
| 1.4001 | 12300 | 0.0 | - |
|
402 |
+
| 1.4058 | 12350 | 0.0 | - |
|
403 |
+
| 1.4115 | 12400 | 0.0 | - |
|
404 |
+
| 1.4172 | 12450 | 0.0 | - |
|
405 |
+
| 1.4229 | 12500 | 0.0 | - |
|
406 |
+
| 1.4286 | 12550 | 0.0 | - |
|
407 |
+
| 1.4343 | 12600 | 0.0 | - |
|
408 |
+
| 1.4400 | 12650 | 0.0 | - |
|
409 |
+
| 1.4456 | 12700 | 0.0 | - |
|
410 |
+
| 1.4513 | 12750 | 0.0 | - |
|
411 |
+
| 1.4570 | 12800 | 0.0 | - |
|
412 |
+
| 1.4627 | 12850 | 0.0 | - |
|
413 |
+
| 1.4684 | 12900 | 0.0 | - |
|
414 |
+
| 1.4741 | 12950 | 0.0 | - |
|
415 |
+
| 1.4798 | 13000 | 0.0 | - |
|
416 |
+
| 1.4855 | 13050 | 0.0 | - |
|
417 |
+
| 1.4912 | 13100 | 0.0 | - |
|
418 |
+
| 1.4969 | 13150 | 0.0001 | - |
|
419 |
+
| 1.5026 | 13200 | 0.0 | - |
|
420 |
+
| 1.5083 | 13250 | 0.0 | - |
|
421 |
+
| 1.5139 | 13300 | 0.0 | - |
|
422 |
+
| 1.5196 | 13350 | 0.0 | - |
|
423 |
+
| 1.5253 | 13400 | 0.0 | - |
|
424 |
+
| 1.5310 | 13450 | 0.0 | - |
|
425 |
+
| 1.5367 | 13500 | 0.0001 | - |
|
426 |
+
| 1.5424 | 13550 | 0.0 | - |
|
427 |
+
| 1.5481 | 13600 | 0.0 | - |
|
428 |
+
| 1.5538 | 13650 | 0.0 | - |
|
429 |
+
| 1.5595 | 13700 | 0.0001 | - |
|
430 |
+
| 1.5652 | 13750 | 0.0001 | - |
|
431 |
+
| 1.5709 | 13800 | 0.0 | - |
|
432 |
+
| 1.5766 | 13850 | 0.0001 | - |
|
433 |
+
| 1.5822 | 13900 | 0.0 | - |
|
434 |
+
| 1.5879 | 13950 | 0.0 | - |
|
435 |
+
| 1.5936 | 14000 | 0.0 | - |
|
436 |
+
| 1.5993 | 14050 | 0.0 | - |
|
437 |
+
| 1.6050 | 14100 | 0.0 | - |
|
438 |
+
| 1.6107 | 14150 | 0.0 | - |
|
439 |
+
| 1.6164 | 14200 | 0.0 | - |
|
440 |
+
| 1.6221 | 14250 | 0.0 | - |
|
441 |
+
| 1.6278 | 14300 | 0.0 | - |
|
442 |
+
| 1.6335 | 14350 | 0.0 | - |
|
443 |
+
| 1.6392 | 14400 | 0.0 | - |
|
444 |
+
| 1.6448 | 14450 | 0.0 | - |
|
445 |
+
| 1.6505 | 14500 | 0.0 | - |
|
446 |
+
| 1.6562 | 14550 | 0.0 | - |
|
447 |
+
| 1.6619 | 14600 | 0.0 | - |
|
448 |
+
| 1.6676 | 14650 | 0.0 | - |
|
449 |
+
| 1.6733 | 14700 | 0.0 | - |
|
450 |
+
| 1.6790 | 14750 | 0.0 | - |
|
451 |
+
| 1.6847 | 14800 | 0.0 | - |
|
452 |
+
| 1.6904 | 14850 | 0.0 | - |
|
453 |
+
| 1.6961 | 14900 | 0.0 | - |
|
454 |
+
| 1.7018 | 14950 | 0.0 | - |
|
455 |
+
| 1.7075 | 15000 | 0.0 | - |
|
456 |
+
| 1.7131 | 15050 | 0.0 | - |
|
457 |
+
| 1.7188 | 15100 | 0.0 | - |
|
458 |
+
| 1.7245 | 15150 | 0.0001 | - |
|
459 |
+
| 1.7302 | 15200 | 0.0 | - |
|
460 |
+
| 1.7359 | 15250 | 0.0 | - |
|
461 |
+
| 1.7416 | 15300 | 0.0002 | - |
|
462 |
+
| 1.7473 | 15350 | 0.0 | - |
|
463 |
+
| 1.7530 | 15400 | 0.0 | - |
|
464 |
+
| 1.7587 | 15450 | 0.0 | - |
|
465 |
+
| 1.7644 | 15500 | 0.0 | - |
|
466 |
+
| 1.7701 | 15550 | 0.0 | - |
|
467 |
+
| 1.7758 | 15600 | 0.0 | - |
|
468 |
+
| 1.7814 | 15650 | 0.0 | - |
|
469 |
+
| 1.7871 | 15700 | 0.0 | - |
|
470 |
+
| 1.7928 | 15750 | 0.0 | - |
|
471 |
+
| 1.7985 | 15800 | 0.0 | - |
|
472 |
+
| 1.8042 | 15850 | 0.0 | - |
|
473 |
+
| 1.8099 | 15900 | 0.0 | - |
|
474 |
+
| 1.8156 | 15950 | 0.0 | - |
|
475 |
+
| 1.8213 | 16000 | 0.0 | - |
|
476 |
+
| 1.8270 | 16050 | 0.0 | - |
|
477 |
+
| 1.8327 | 16100 | 0.0 | - |
|
478 |
+
| 1.8384 | 16150 | 0.0001 | - |
|
479 |
+
| 1.8441 | 16200 | 0.0 | - |
|
480 |
+
| 1.8497 | 16250 | 0.0 | - |
|
481 |
+
| 1.8554 | 16300 | 0.0 | - |
|
482 |
+
| 1.8611 | 16350 | 0.0 | - |
|
483 |
+
| 1.8668 | 16400 | 0.0 | - |
|
484 |
+
| 1.8725 | 16450 | 0.0 | - |
|
485 |
+
| 1.8782 | 16500 | 0.0 | - |
|
486 |
+
| 1.8839 | 16550 | 0.0 | - |
|
487 |
+
| 1.8896 | 16600 | 0.0 | - |
|
488 |
+
| 1.8953 | 16650 | 0.0 | - |
|
489 |
+
| 1.9010 | 16700 | 0.0 | - |
|
490 |
+
| 1.9067 | 16750 | 0.0 | - |
|
491 |
+
| 1.9124 | 16800 | 0.0 | - |
|
492 |
+
| 1.9180 | 16850 | 0.0 | - |
|
493 |
+
| 1.9237 | 16900 | 0.0 | - |
|
494 |
+
| 1.9294 | 16950 | 0.0 | - |
|
495 |
+
| 1.9351 | 17000 | 0.0 | - |
|
496 |
+
| 1.9408 | 17050 | 0.0 | - |
|
497 |
+
| 1.9465 | 17100 | 0.0 | - |
|
498 |
+
| 1.9522 | 17150 | 0.0 | - |
|
499 |
+
| 1.9579 | 17200 | 0.0 | - |
|
500 |
+
| 1.9636 | 17250 | 0.0 | - |
|
501 |
+
| 1.9693 | 17300 | 0.0 | - |
|
502 |
+
| 1.9750 | 17350 | 0.0 | - |
|
503 |
+
| 1.9806 | 17400 | 0.0 | - |
|
504 |
+
| 1.9863 | 17450 | 0.0 | - |
|
505 |
+
| 1.9920 | 17500 | 0.0 | - |
|
506 |
+
| 1.9977 | 17550 | 0.0 | - |
|
507 |
+
| 2.0034 | 17600 | 0.0 | - |
|
508 |
+
| 2.0091 | 17650 | 0.0 | - |
|
509 |
+
| 2.0148 | 17700 | 0.0 | - |
|
510 |
+
| 2.0205 | 17750 | 0.0 | - |
|
511 |
+
| 2.0262 | 17800 | 0.0 | - |
|
512 |
+
| 2.0319 | 17850 | 0.0523 | - |
|
513 |
+
| 2.0376 | 17900 | 0.0 | - |
|
514 |
+
| 2.0433 | 17950 | 0.0 | - |
|
515 |
+
| 2.0489 | 18000 | 0.0 | - |
|
516 |
+
| 2.0546 | 18050 | 0.0 | - |
|
517 |
+
| 2.0603 | 18100 | 0.0 | - |
|
518 |
+
| 2.0660 | 18150 | 0.0 | - |
|
519 |
+
| 2.0717 | 18200 | 0.0 | - |
|
520 |
+
| 2.0774 | 18250 | 0.0 | - |
|
521 |
+
| 2.0831 | 18300 | 0.0 | - |
|
522 |
+
| 2.0888 | 18350 | 0.0 | - |
|
523 |
+
| 2.0945 | 18400 | 0.0 | - |
|
524 |
+
| 2.1002 | 18450 | 0.0 | - |
|
525 |
+
| 2.1059 | 18500 | 0.0 | - |
|
526 |
+
| 2.1116 | 18550 | 0.0 | - |
|
527 |
+
| 2.1172 | 18600 | 0.0 | - |
|
528 |
+
| 2.1229 | 18650 | 0.0 | - |
|
529 |
+
| 2.1286 | 18700 | 0.0 | - |
|
530 |
+
| 2.1343 | 18750 | 0.0 | - |
|
531 |
+
| 2.1400 | 18800 | 0.0 | - |
|
532 |
+
| 2.1457 | 18850 | 0.0 | - |
|
533 |
+
| 2.1514 | 18900 | 0.0 | - |
|
534 |
+
| 2.1571 | 18950 | 0.0 | - |
|
535 |
+
| 2.1628 | 19000 | 0.0 | - |
|
536 |
+
| 2.1685 | 19050 | 0.0 | - |
|
537 |
+
| 2.1742 | 19100 | 0.0 | - |
|
538 |
+
| 2.1799 | 19150 | 0.0 | - |
|
539 |
+
| 2.1855 | 19200 | 0.0 | - |
|
540 |
+
| 2.1912 | 19250 | 0.0 | - |
|
541 |
+
| 2.1969 | 19300 | 0.0 | - |
|
542 |
+
| 2.2026 | 19350 | 0.0 | - |
|
543 |
+
| 2.2083 | 19400 | 0.0 | - |
|
544 |
+
| 2.2140 | 19450 | 0.0 | - |
|
545 |
+
| 2.2197 | 19500 | 0.0 | - |
|
546 |
+
| 2.2254 | 19550 | 0.0 | - |
|
547 |
+
| 2.2311 | 19600 | 0.0 | - |
|
548 |
+
| 2.2368 | 19650 | 0.0 | - |
|
549 |
+
| 2.2425 | 19700 | 0.0 | - |
|
550 |
+
| 2.2482 | 19750 | 0.0 | - |
|
551 |
+
| 2.2538 | 19800 | 0.0 | - |
|
552 |
+
| 2.2595 | 19850 | 0.0 | - |
|
553 |
+
| 2.2652 | 19900 | 0.0 | - |
|
554 |
+
| 2.2709 | 19950 | 0.0 | - |
|
555 |
+
| 2.2766 | 20000 | 0.0 | - |
|
556 |
+
| 2.2823 | 20050 | 0.0 | - |
|
557 |
+
| 2.2880 | 20100 | 0.0 | - |
|
558 |
+
| 2.2937 | 20150 | 0.0 | - |
|
559 |
+
| 2.2994 | 20200 | 0.0 | - |
|
560 |
+
| 2.3051 | 20250 | 0.0 | - |
|
561 |
+
| 2.3108 | 20300 | 0.0 | - |
|
562 |
+
| 2.3164 | 20350 | 0.0 | - |
|
563 |
+
| 2.3221 | 20400 | 0.0 | - |
|
564 |
+
| 2.3278 | 20450 | 0.0 | - |
|
565 |
+
| 2.3335 | 20500 | 0.0 | - |
|
566 |
+
| 2.3392 | 20550 | 0.0 | - |
|
567 |
+
| 2.3449 | 20600 | 0.0 | - |
|
568 |
+
| 2.3506 | 20650 | 0.0 | - |
|
569 |
+
| 2.3563 | 20700 | 0.0 | - |
|
570 |
+
| 2.3620 | 20750 | 0.0 | - |
|
571 |
+
| 2.3677 | 20800 | 0.0 | - |
|
572 |
+
| 2.3734 | 20850 | 0.0 | - |
|
573 |
+
| 2.3791 | 20900 | 0.0 | - |
|
574 |
+
| 2.3847 | 20950 | 0.0 | - |
|
575 |
+
| 2.3904 | 21000 | 0.0 | - |
|
576 |
+
| 2.3961 | 21050 | 0.0 | - |
|
577 |
+
| 2.4018 | 21100 | 0.0 | - |
|
578 |
+
| 2.4075 | 21150 | 0.0 | - |
|
579 |
+
| 2.4132 | 21200 | 0.0 | - |
|
580 |
+
| 2.4189 | 21250 | 0.0 | - |
|
581 |
+
| 2.4246 | 21300 | 0.0 | - |
|
582 |
+
| 2.4303 | 21350 | 0.0 | - |
|
583 |
+
| 2.4360 | 21400 | 0.0 | - |
|
584 |
+
| 2.4417 | 21450 | 0.0 | - |
|
585 |
+
| 2.4474 | 21500 | 0.0 | - |
|
586 |
+
| 2.4530 | 21550 | 0.0 | - |
|
587 |
+
| 2.4587 | 21600 | 0.0 | - |
|
588 |
+
| 2.4644 | 21650 | 0.0 | - |
|
589 |
+
| 2.4701 | 21700 | 0.0 | - |
|
590 |
+
| 2.4758 | 21750 | 0.0 | - |
|
591 |
+
| 2.4815 | 21800 | 0.0 | - |
|
592 |
+
| 2.4872 | 21850 | 0.0 | - |
|
593 |
+
| 2.4929 | 21900 | 0.0 | - |
|
594 |
+
| 2.4986 | 21950 | 0.0 | - |
|
595 |
+
| 2.5043 | 22000 | 0.0 | - |
|
596 |
+
| 2.5100 | 22050 | 0.0 | - |
|
597 |
+
| 2.5157 | 22100 | 0.0 | - |
|
598 |
+
| 2.5213 | 22150 | 0.0 | - |
|
599 |
+
| 2.5270 | 22200 | 0.0 | - |
|
600 |
+
| 2.5327 | 22250 | 0.0 | - |
|
601 |
+
| 2.5384 | 22300 | 0.0 | - |
|
602 |
+
| 2.5441 | 22350 | 0.0 | - |
|
603 |
+
| 2.5498 | 22400 | 0.0 | - |
|
604 |
+
| 2.5555 | 22450 | 0.0 | - |
|
605 |
+
| 2.5612 | 22500 | 0.0 | - |
|
606 |
+
| 2.5669 | 22550 | 0.0 | - |
|
607 |
+
| 2.5726 | 22600 | 0.0 | - |
|
608 |
+
| 2.5783 | 22650 | 0.0 | - |
|
609 |
+
| 2.5839 | 22700 | 0.0 | - |
|
610 |
+
| 2.5896 | 22750 | 0.0 | - |
|
611 |
+
| 2.5953 | 22800 | 0.0 | - |
|
612 |
+
| 2.6010 | 22850 | 0.0 | - |
|
613 |
+
| 2.6067 | 22900 | 0.0 | - |
|
614 |
+
| 2.6124 | 22950 | 0.0 | - |
|
615 |
+
| 2.6181 | 23000 | 0.0 | - |
|
616 |
+
| 2.6238 | 23050 | 0.0 | - |
|
617 |
+
| 2.6295 | 23100 | 0.0 | - |
|
618 |
+
| 2.6352 | 23150 | 0.0 | - |
|
619 |
+
| 2.6409 | 23200 | 0.0 | - |
|
620 |
+
| 2.6466 | 23250 | 0.0 | - |
|
621 |
+
| 2.6522 | 23300 | 0.0 | - |
|
622 |
+
| 2.6579 | 23350 | 0.0 | - |
|
623 |
+
| 2.6636 | 23400 | 0.0 | - |
|
624 |
+
| 2.6693 | 23450 | 0.0 | - |
|
625 |
+
| 2.6750 | 23500 | 0.0 | - |
|
626 |
+
| 2.6807 | 23550 | 0.0 | - |
|
627 |
+
| 2.6864 | 23600 | 0.0 | - |
|
628 |
+
| 2.6921 | 23650 | 0.0 | - |
|
629 |
+
| 2.6978 | 23700 | 0.0 | - |
|
630 |
+
| 2.7035 | 23750 | 0.0 | - |
|
631 |
+
| 2.7092 | 23800 | 0.0 | - |
|
632 |
+
| 2.7149 | 23850 | 0.0 | - |
|
633 |
+
| 2.7205 | 23900 | 0.0 | - |
|
634 |
+
| 2.7262 | 23950 | 0.0 | - |
|
635 |
+
| 2.7319 | 24000 | 0.0 | - |
|
636 |
+
| 2.7376 | 24050 | 0.0 | - |
|
637 |
+
| 2.7433 | 24100 | 0.0 | - |
|
638 |
+
| 2.7490 | 24150 | 0.0 | - |
|
639 |
+
| 2.7547 | 24200 | 0.0 | - |
|
640 |
+
| 2.7604 | 24250 | 0.0 | - |
|
641 |
+
| 2.7661 | 24300 | 0.0 | - |
|
642 |
+
| 2.7718 | 24350 | 0.0 | - |
|
643 |
+
| 2.7775 | 24400 | 0.0 | - |
|
644 |
+
| 2.7832 | 24450 | 0.0 | - |
|
645 |
+
| 2.7888 | 24500 | 0.0 | - |
|
646 |
+
| 2.7945 | 24550 | 0.0 | - |
|
647 |
+
| 2.8002 | 24600 | 0.0 | - |
|
648 |
+
| 2.8059 | 24650 | 0.0 | - |
|
649 |
+
| 2.8116 | 24700 | 0.0 | - |
|
650 |
+
| 2.8173 | 24750 | 0.0 | - |
|
651 |
+
| 2.8230 | 24800 | 0.0 | - |
|
652 |
+
| 2.8287 | 24850 | 0.0 | - |
|
653 |
+
| 2.8344 | 24900 | 0.0 | - |
|
654 |
+
| 2.8401 | 24950 | 0.0 | - |
|
655 |
+
| 2.8458 | 25000 | 0.0 | - |
|
656 |
+
| 2.8515 | 25050 | 0.0 | - |
|
657 |
+
| 2.8571 | 25100 | 0.0 | - |
|
658 |
+
| 2.8628 | 25150 | 0.0 | - |
|
659 |
+
| 2.8685 | 25200 | 0.0 | - |
|
660 |
+
| 2.8742 | 25250 | 0.0 | - |
|
661 |
+
| 2.8799 | 25300 | 0.0 | - |
|
662 |
+
| 2.8856 | 25350 | 0.0 | - |
|
663 |
+
| 2.8913 | 25400 | 0.0 | - |
|
664 |
+
| 2.8970 | 25450 | 0.0 | - |
|
665 |
+
| 2.9027 | 25500 | 0.0 | - |
|
666 |
+
| 2.9084 | 25550 | 0.0 | - |
|
667 |
+
| 2.9141 | 25600 | 0.0 | - |
|
668 |
+
| 2.9197 | 25650 | 0.0 | - |
|
669 |
+
| 2.9254 | 25700 | 0.0 | - |
|
670 |
+
| 2.9311 | 25750 | 0.0 | - |
|
671 |
+
| 2.9368 | 25800 | 0.0 | - |
|
672 |
+
| 2.9425 | 25850 | 0.0 | - |
|
673 |
+
| 2.9482 | 25900 | 0.0 | - |
|
674 |
+
| 2.9539 | 25950 | 0.0 | - |
|
675 |
+
| 2.9596 | 26000 | 0.0 | - |
|
676 |
+
| 2.9653 | 26050 | 0.0 | - |
|
677 |
+
| 2.9710 | 26100 | 0.0 | - |
|
678 |
+
| 2.9767 | 26150 | 0.0 | - |
|
679 |
+
| 2.9824 | 26200 | 0.0 | - |
|
680 |
+
| 2.9880 | 26250 | 0.0 | - |
|
681 |
+
| 2.9937 | 26300 | 0.0 | - |
|
682 |
+
| 2.9994 | 26350 | 0.0 | - |
|
683 |
+
|
684 |
+
### Framework Versions
|
685 |
+
- Python: 3.10.12
|
686 |
+
- SetFit: 1.0.3
|
687 |
+
- Sentence Transformers: 3.3.1
|
688 |
+
- Transformers: 4.41.2
|
689 |
+
- PyTorch: 2.1.0+cu118
|
690 |
+
- Datasets: 2.20.0
|
691 |
+
- Tokenizers: 0.19.1
|
692 |
+
|
693 |
+
## Citation
|
694 |
+
|
695 |
+
### BibTeX
|
696 |
+
```bibtex
|
697 |
+
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
698 |
+
doi = {10.48550/ARXIV.2209.11055},
|
699 |
+
url = {https://arxiv.org/abs/2209.11055},
|
700 |
+
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
701 |
+
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
702 |
+
title = {Efficient Few-Shot Learning Without Prompts},
|
703 |
+
publisher = {arXiv},
|
704 |
+
year = {2022},
|
705 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
706 |
+
}
|
707 |
+
```
|
708 |
+
|
709 |
+
<!--
|
710 |
+
## Glossary
|
711 |
+
|
712 |
+
*Clearly define terms in order to be accessible across audiences.*
|
713 |
+
-->
|
714 |
+
|
715 |
+
<!--
|
716 |
+
## Model Card Authors
|
717 |
+
|
718 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
719 |
+
-->
|
720 |
+
|
721 |
+
<!--
|
722 |
+
## Model Card Contact
|
723 |
+
|
724 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
725 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "Vishal24/bert-1ds-domain",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 3072,
|
14 |
+
"layer_norm_eps": 1e-12,
|
15 |
+
"max_position_embeddings": 512,
|
16 |
+
"model_type": "bert",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 12,
|
19 |
+
"pad_token_id": 0,
|
20 |
+
"position_embedding_type": "absolute",
|
21 |
+
"torch_dtype": "float32",
|
22 |
+
"transformers_version": "4.41.2",
|
23 |
+
"type_vocab_size": 2,
|
24 |
+
"use_cache": true,
|
25 |
+
"vocab_size": 28996
|
26 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.3.1",
|
4 |
+
"transformers": "4.41.2",
|
5 |
+
"pytorch": "2.1.0+cu118"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine"
|
10 |
+
}
|
config_setfit.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"labels": null,
|
3 |
+
"normalize_embeddings": false
|
4 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cb72fb325d9595011f1fdbc318e34266a2366f6da7c60640eb7a7976a5d778c7
|
3 |
+
size 433263448
|
model_head.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ea6c2073e905d151536e9ff785815de9ea1920cc777d82d47a2775dd3970b26e
|
3 |
+
size 7702
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_lower_case": false,
|
47 |
+
"mask_token": "[MASK]",
|
48 |
+
"model_max_length": 512,
|
49 |
+
"pad_token": "[PAD]",
|
50 |
+
"sep_token": "[SEP]",
|
51 |
+
"strip_accents": null,
|
52 |
+
"tokenize_chinese_chars": true,
|
53 |
+
"tokenizer_class": "BertTokenizer",
|
54 |
+
"unk_token": "[UNK]"
|
55 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|