---
base_model: Vishal24/bert-1ds-domain
datasets:
- Vishal24/BCG_classifier
library_name: setfit
metrics:
- f1
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: fair and handsome 100 oil clear face wash
- text: hazelnut
- text: aqualohica body mist
- text: joy body lotion 300 ml
- text: top of browse listings page
inference: true
model-index:
- name: SetFit with Vishal24/bert-1ds-domain
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Vishal24/BCG_classifier
type: Vishal24/BCG_classifier
split: test
metrics:
- type: f1
value: 0.9233278955954323
name: F1
---
# SetFit with Vishal24/bert-1ds-domain
This is a [SetFit](https://github.com/huggingface/setfit) model trained on the [Vishal24/BCG_classifier](https://huggingface.co/datasets/Vishal24/BCG_classifier) dataset that can be used for Text Classification. This SetFit model uses [Vishal24/bert-1ds-domain](https://huggingface.co/Vishal24/bert-1ds-domain) as the Sentence Transformer embedding model. A [SetFitHead](huggingface.co/docs/setfit/reference/main#setfit.SetFitHead) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [Vishal24/bert-1ds-domain](https://huggingface.co/Vishal24/bert-1ds-domain)
- **Classification head:** a [SetFitHead](huggingface.co/docs/setfit/reference/main#setfit.SetFitHead) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 2 classes
- **Training Dataset:** [Vishal24/BCG_classifier](https://huggingface.co/datasets/Vishal24/BCG_classifier)
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:------|:-------------------------------------------------------------------------------------------------------------------------------------------|
| 0 |
- 'mois'
- 'time skincare soap'
- 'paraben free'
|
| 1 | - 'tomato ketchup 1kg flipkart'
- 'sunsilk keratin yogurt shampoo lusciously thick long'
- 'wow aloevera soap'
|
## Evaluation
### Metrics
| Label | F1 |
|:--------|:-------|
| **all** | 0.9233 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("Vishal24/BCG-classifier")
# Run inference
preds = model("hazelnut")
```
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count | 1 | 3.4474 | 19 |
| Label | Training Sample Count |
|:------|:----------------------|
| 0 | 2252 |
| 1 | 1262 |
### Training Hyperparameters
- batch_size: (16, 2)
- num_epochs: (3, 3)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 20
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:------:|:-----:|:-------------:|:---------------:|
| 0.0001 | 1 | 0.2765 | - |
| 0.0057 | 50 | 0.2529 | - |
| 0.0114 | 100 | 0.252 | - |
| 0.0171 | 150 | 0.2657 | - |
| 0.0228 | 200 | 0.2735 | - |
| 0.0285 | 250 | 0.236 | - |
| 0.0341 | 300 | 0.2366 | - |
| 0.0398 | 350 | 0.2316 | - |
| 0.0455 | 400 | 0.185 | - |
| 0.0512 | 450 | 0.1396 | - |
| 0.0569 | 500 | 0.2137 | - |
| 0.0626 | 550 | 0.093 | - |
| 0.0683 | 600 | 0.1219 | - |
| 0.0740 | 650 | 0.0974 | - |
| 0.0797 | 700 | 0.2257 | - |
| 0.0854 | 750 | 0.0951 | - |
| 0.0911 | 800 | 0.0994 | - |
| 0.0968 | 850 | 0.0752 | - |
| 0.1024 | 900 | 0.0848 | - |
| 0.1081 | 950 | 0.015 | - |
| 0.1138 | 1000 | 0.0541 | - |
| 0.1195 | 1050 | 0.0357 | - |
| 0.1252 | 1100 | 0.0314 | - |
| 0.1309 | 1150 | 0.0557 | - |
| 0.1366 | 1200 | 0.0027 | - |
| 0.1423 | 1250 | 0.0387 | - |
| 0.1480 | 1300 | 0.0026 | - |
| 0.1537 | 1350 | 0.044 | - |
| 0.1594 | 1400 | 0.0499 | - |
| 0.1651 | 1450 | 0.001 | - |
| 0.1707 | 1500 | 0.0007 | - |
| 0.1764 | 1550 | 0.0008 | - |
| 0.1821 | 1600 | 0.0009 | - |
| 0.1878 | 1650 | 0.053 | - |
| 0.1935 | 1700 | 0.1111 | - |
| 0.1992 | 1750 | 0.0018 | - |
| 0.2049 | 1800 | 0.0009 | - |
| 0.2106 | 1850 | 0.0008 | - |
| 0.2163 | 1900 | 0.0011 | - |
| 0.2220 | 1950 | 0.0042 | - |
| 0.2277 | 2000 | 0.0005 | - |
| 0.2334 | 2050 | 0.0023 | - |
| 0.2390 | 2100 | 0.0003 | - |
| 0.2447 | 2150 | 0.0004 | - |
| 0.2504 | 2200 | 0.055 | - |
| 0.2561 | 2250 | 0.0584 | - |
| 0.2618 | 2300 | 0.06 | - |
| 0.2675 | 2350 | 0.0004 | - |
| 0.2732 | 2400 | 0.0022 | - |
| 0.2789 | 2450 | 0.0005 | - |
| 0.2846 | 2500 | 0.0014 | - |
| 0.2903 | 2550 | 0.0008 | - |
| 0.2960 | 2600 | 0.0004 | - |
| 0.3017 | 2650 | 0.0118 | - |
| 0.3073 | 2700 | 0.0892 | - |
| 0.3130 | 2750 | 0.0004 | - |
| 0.3187 | 2800 | 0.0061 | - |
| 0.3244 | 2850 | 0.0601 | - |
| 0.3301 | 2900 | 0.0003 | - |
| 0.3358 | 2950 | 0.0007 | - |
| 0.3415 | 3000 | 0.0006 | - |
| 0.3472 | 3050 | 0.0002 | - |
| 0.3529 | 3100 | 0.0002 | - |
| 0.3586 | 3150 | 0.0005 | - |
| 0.3643 | 3200 | 0.0003 | - |
| 0.3699 | 3250 | 0.0002 | - |
| 0.3756 | 3300 | 0.0008 | - |
| 0.3813 | 3350 | 0.0002 | - |
| 0.3870 | 3400 | 0.0513 | - |
| 0.3927 | 3450 | 0.0003 | - |
| 0.3984 | 3500 | 0.0002 | - |
| 0.4041 | 3550 | 0.0006 | - |
| 0.4098 | 3600 | 0.0005 | - |
| 0.4155 | 3650 | 0.0003 | - |
| 0.4212 | 3700 | 0.0002 | - |
| 0.4269 | 3750 | 0.0002 | - |
| 0.4326 | 3800 | 0.0005 | - |
| 0.4382 | 3850 | 0.0001 | - |
| 0.4439 | 3900 | 0.0002 | - |
| 0.4496 | 3950 | 0.0001 | - |
| 0.4553 | 4000 | 0.0003 | - |
| 0.4610 | 4050 | 0.0001 | - |
| 0.4667 | 4100 | 0.0595 | - |
| 0.4724 | 4150 | 0.0002 | - |
| 0.4781 | 4200 | 0.0001 | - |
| 0.4838 | 4250 | 0.0002 | - |
| 0.4895 | 4300 | 0.0001 | - |
| 0.4952 | 4350 | 0.0002 | - |
| 0.5009 | 4400 | 0.0001 | - |
| 0.5065 | 4450 | 0.0001 | - |
| 0.5122 | 4500 | 0.0002 | - |
| 0.5179 | 4550 | 0.0001 | - |
| 0.5236 | 4600 | 0.0014 | - |
| 0.5293 | 4650 | 0.0001 | - |
| 0.5350 | 4700 | 0.0001 | - |
| 0.5407 | 4750 | 0.0002 | - |
| 0.5464 | 4800 | 0.0001 | - |
| 0.5521 | 4850 | 0.0419 | - |
| 0.5578 | 4900 | 0.0001 | - |
| 0.5635 | 4950 | 0.0001 | - |
| 0.5692 | 5000 | 0.0001 | - |
| 0.5748 | 5050 | 0.0001 | - |
| 0.5805 | 5100 | 0.0001 | - |
| 0.5862 | 5150 | 0.0001 | - |
| 0.5919 | 5200 | 0.0001 | - |
| 0.5976 | 5250 | 0.0001 | - |
| 0.6033 | 5300 | 0.0001 | - |
| 0.6090 | 5350 | 0.0001 | - |
| 0.6147 | 5400 | 0.0 | - |
| 0.6204 | 5450 | 0.0 | - |
| 0.6261 | 5500 | 0.0001 | - |
| 0.6318 | 5550 | 0.0 | - |
| 0.6375 | 5600 | 0.0001 | - |
| 0.6431 | 5650 | 0.0001 | - |
| 0.6488 | 5700 | 0.0006 | - |
| 0.6545 | 5750 | 0.0001 | - |
| 0.6602 | 5800 | 0.0001 | - |
| 0.6659 | 5850 | 0.0001 | - |
| 0.6716 | 5900 | 0.0001 | - |
| 0.6773 | 5950 | 0.0001 | - |
| 0.6830 | 6000 | 0.0002 | - |
| 0.6887 | 6050 | 0.0002 | - |
| 0.6944 | 6100 | 0.0001 | - |
| 0.7001 | 6150 | 0.0001 | - |
| 0.7057 | 6200 | 0.0001 | - |
| 0.7114 | 6250 | 0.0 | - |
| 0.7171 | 6300 | 0.0001 | - |
| 0.7228 | 6350 | 0.0001 | - |
| 0.7285 | 6400 | 0.0001 | - |
| 0.7342 | 6450 | 0.0001 | - |
| 0.7399 | 6500 | 0.0002 | - |
| 0.7456 | 6550 | 0.0001 | - |
| 0.7513 | 6600 | 0.0001 | - |
| 0.7570 | 6650 | 0.0 | - |
| 0.7627 | 6700 | 0.0001 | - |
| 0.7684 | 6750 | 0.0001 | - |
| 0.7740 | 6800 | 0.0001 | - |
| 0.7797 | 6850 | 0.0003 | - |
| 0.7854 | 6900 | 0.0515 | - |
| 0.7911 | 6950 | 0.0001 | - |
| 0.7968 | 7000 | 0.0003 | - |
| 0.8025 | 7050 | 0.0001 | - |
| 0.8082 | 7100 | 0.0001 | - |
| 0.8139 | 7150 | 0.0001 | - |
| 0.8196 | 7200 | 0.0 | - |
| 0.8253 | 7250 | 0.0001 | - |
| 0.8310 | 7300 | 0.0 | - |
| 0.8367 | 7350 | 0.0001 | - |
| 0.8423 | 7400 | 0.0001 | - |
| 0.8480 | 7450 | 0.0001 | - |
| 0.8537 | 7500 | 0.0001 | - |
| 0.8594 | 7550 | 0.0 | - |
| 0.8651 | 7600 | 0.0 | - |
| 0.8708 | 7650 | 0.0 | - |
| 0.8765 | 7700 | 0.0 | - |
| 0.8822 | 7750 | 0.0014 | - |
| 0.8879 | 7800 | 0.0001 | - |
| 0.8936 | 7850 | 0.0001 | - |
| 0.8993 | 7900 | 0.0 | - |
| 0.9050 | 7950 | 0.0001 | - |
| 0.9106 | 8000 | 0.0002 | - |
| 0.9163 | 8050 | 0.0001 | - |
| 0.9220 | 8100 | 0.0 | - |
| 0.9277 | 8150 | 0.0 | - |
| 0.9334 | 8200 | 0.0001 | - |
| 0.9391 | 8250 | 0.0 | - |
| 0.9448 | 8300 | 0.0001 | - |
| 0.9505 | 8350 | 0.0004 | - |
| 0.9562 | 8400 | 0.0001 | - |
| 0.9619 | 8450 | 0.0 | - |
| 0.9676 | 8500 | 0.001 | - |
| 0.9732 | 8550 | 0.0001 | - |
| 0.9789 | 8600 | 0.0001 | - |
| 0.9846 | 8650 | 0.0 | - |
| 0.9903 | 8700 | 0.0 | - |
| 0.9960 | 8750 | 0.0001 | - |
| 1.0017 | 8800 | 0.0002 | - |
| 1.0074 | 8850 | 0.0 | - |
| 1.0131 | 8900 | 0.0 | - |
| 1.0188 | 8950 | 0.0 | - |
| 1.0245 | 9000 | 0.0001 | - |
| 1.0302 | 9050 | 0.0 | - |
| 1.0359 | 9100 | 0.0 | - |
| 1.0415 | 9150 | 0.0 | - |
| 1.0472 | 9200 | 0.0 | - |
| 1.0529 | 9250 | 0.0 | - |
| 1.0586 | 9300 | 0.0 | - |
| 1.0643 | 9350 | 0.0 | - |
| 1.0700 | 9400 | 0.0001 | - |
| 1.0757 | 9450 | 0.0 | - |
| 1.0814 | 9500 | 0.0 | - |
| 1.0871 | 9550 | 0.0 | - |
| 1.0928 | 9600 | 0.0 | - |
| 1.0985 | 9650 | 0.0 | - |
| 1.1042 | 9700 | 0.0001 | - |
| 1.1098 | 9750 | 0.0002 | - |
| 1.1155 | 9800 | 0.0097 | - |
| 1.1212 | 9850 | 0.0 | - |
| 1.1269 | 9900 | 0.0 | - |
| 1.1326 | 9950 | 0.0001 | - |
| 1.1383 | 10000 | 0.0 | - |
| 1.1440 | 10050 | 0.0 | - |
| 1.1497 | 10100 | 0.0001 | - |
| 1.1554 | 10150 | 0.0004 | - |
| 1.1611 | 10200 | 0.0 | - |
| 1.1668 | 10250 | 0.0 | - |
| 1.1725 | 10300 | 0.0 | - |
| 1.1781 | 10350 | 0.0 | - |
| 1.1838 | 10400 | 0.0001 | - |
| 1.1895 | 10450 | 0.0 | - |
| 1.1952 | 10500 | 0.0 | - |
| 1.2009 | 10550 | 0.0 | - |
| 1.2066 | 10600 | 0.0 | - |
| 1.2123 | 10650 | 0.0 | - |
| 1.2180 | 10700 | 0.0001 | - |
| 1.2237 | 10750 | 0.0 | - |
| 1.2294 | 10800 | 0.0 | - |
| 1.2351 | 10850 | 0.0001 | - |
| 1.2408 | 10900 | 0.0305 | - |
| 1.2464 | 10950 | 0.0617 | - |
| 1.2521 | 11000 | 0.0 | - |
| 1.2578 | 11050 | 0.0 | - |
| 1.2635 | 11100 | 0.0 | - |
| 1.2692 | 11150 | 0.0 | - |
| 1.2749 | 11200 | 0.0 | - |
| 1.2806 | 11250 | 0.0 | - |
| 1.2863 | 11300 | 0.0 | - |
| 1.2920 | 11350 | 0.0 | - |
| 1.2977 | 11400 | 0.0 | - |
| 1.3034 | 11450 | 0.0 | - |
| 1.3090 | 11500 | 0.0 | - |
| 1.3147 | 11550 | 0.0 | - |
| 1.3204 | 11600 | 0.0 | - |
| 1.3261 | 11650 | 0.0 | - |
| 1.3318 | 11700 | 0.0 | - |
| 1.3375 | 11750 | 0.0 | - |
| 1.3432 | 11800 | 0.0 | - |
| 1.3489 | 11850 | 0.0 | - |
| 1.3546 | 11900 | 0.0 | - |
| 1.3603 | 11950 | 0.0 | - |
| 1.3660 | 12000 | 0.0 | - |
| 1.3717 | 12050 | 0.0 | - |
| 1.3773 | 12100 | 0.0 | - |
| 1.3830 | 12150 | 0.0 | - |
| 1.3887 | 12200 | 0.0 | - |
| 1.3944 | 12250 | 0.0 | - |
| 1.4001 | 12300 | 0.0 | - |
| 1.4058 | 12350 | 0.0 | - |
| 1.4115 | 12400 | 0.0 | - |
| 1.4172 | 12450 | 0.0 | - |
| 1.4229 | 12500 | 0.0 | - |
| 1.4286 | 12550 | 0.0 | - |
| 1.4343 | 12600 | 0.0 | - |
| 1.4400 | 12650 | 0.0 | - |
| 1.4456 | 12700 | 0.0 | - |
| 1.4513 | 12750 | 0.0 | - |
| 1.4570 | 12800 | 0.0 | - |
| 1.4627 | 12850 | 0.0 | - |
| 1.4684 | 12900 | 0.0 | - |
| 1.4741 | 12950 | 0.0 | - |
| 1.4798 | 13000 | 0.0 | - |
| 1.4855 | 13050 | 0.0 | - |
| 1.4912 | 13100 | 0.0 | - |
| 1.4969 | 13150 | 0.0001 | - |
| 1.5026 | 13200 | 0.0 | - |
| 1.5083 | 13250 | 0.0 | - |
| 1.5139 | 13300 | 0.0 | - |
| 1.5196 | 13350 | 0.0 | - |
| 1.5253 | 13400 | 0.0 | - |
| 1.5310 | 13450 | 0.0 | - |
| 1.5367 | 13500 | 0.0001 | - |
| 1.5424 | 13550 | 0.0 | - |
| 1.5481 | 13600 | 0.0 | - |
| 1.5538 | 13650 | 0.0 | - |
| 1.5595 | 13700 | 0.0001 | - |
| 1.5652 | 13750 | 0.0001 | - |
| 1.5709 | 13800 | 0.0 | - |
| 1.5766 | 13850 | 0.0001 | - |
| 1.5822 | 13900 | 0.0 | - |
| 1.5879 | 13950 | 0.0 | - |
| 1.5936 | 14000 | 0.0 | - |
| 1.5993 | 14050 | 0.0 | - |
| 1.6050 | 14100 | 0.0 | - |
| 1.6107 | 14150 | 0.0 | - |
| 1.6164 | 14200 | 0.0 | - |
| 1.6221 | 14250 | 0.0 | - |
| 1.6278 | 14300 | 0.0 | - |
| 1.6335 | 14350 | 0.0 | - |
| 1.6392 | 14400 | 0.0 | - |
| 1.6448 | 14450 | 0.0 | - |
| 1.6505 | 14500 | 0.0 | - |
| 1.6562 | 14550 | 0.0 | - |
| 1.6619 | 14600 | 0.0 | - |
| 1.6676 | 14650 | 0.0 | - |
| 1.6733 | 14700 | 0.0 | - |
| 1.6790 | 14750 | 0.0 | - |
| 1.6847 | 14800 | 0.0 | - |
| 1.6904 | 14850 | 0.0 | - |
| 1.6961 | 14900 | 0.0 | - |
| 1.7018 | 14950 | 0.0 | - |
| 1.7075 | 15000 | 0.0 | - |
| 1.7131 | 15050 | 0.0 | - |
| 1.7188 | 15100 | 0.0 | - |
| 1.7245 | 15150 | 0.0001 | - |
| 1.7302 | 15200 | 0.0 | - |
| 1.7359 | 15250 | 0.0 | - |
| 1.7416 | 15300 | 0.0002 | - |
| 1.7473 | 15350 | 0.0 | - |
| 1.7530 | 15400 | 0.0 | - |
| 1.7587 | 15450 | 0.0 | - |
| 1.7644 | 15500 | 0.0 | - |
| 1.7701 | 15550 | 0.0 | - |
| 1.7758 | 15600 | 0.0 | - |
| 1.7814 | 15650 | 0.0 | - |
| 1.7871 | 15700 | 0.0 | - |
| 1.7928 | 15750 | 0.0 | - |
| 1.7985 | 15800 | 0.0 | - |
| 1.8042 | 15850 | 0.0 | - |
| 1.8099 | 15900 | 0.0 | - |
| 1.8156 | 15950 | 0.0 | - |
| 1.8213 | 16000 | 0.0 | - |
| 1.8270 | 16050 | 0.0 | - |
| 1.8327 | 16100 | 0.0 | - |
| 1.8384 | 16150 | 0.0001 | - |
| 1.8441 | 16200 | 0.0 | - |
| 1.8497 | 16250 | 0.0 | - |
| 1.8554 | 16300 | 0.0 | - |
| 1.8611 | 16350 | 0.0 | - |
| 1.8668 | 16400 | 0.0 | - |
| 1.8725 | 16450 | 0.0 | - |
| 1.8782 | 16500 | 0.0 | - |
| 1.8839 | 16550 | 0.0 | - |
| 1.8896 | 16600 | 0.0 | - |
| 1.8953 | 16650 | 0.0 | - |
| 1.9010 | 16700 | 0.0 | - |
| 1.9067 | 16750 | 0.0 | - |
| 1.9124 | 16800 | 0.0 | - |
| 1.9180 | 16850 | 0.0 | - |
| 1.9237 | 16900 | 0.0 | - |
| 1.9294 | 16950 | 0.0 | - |
| 1.9351 | 17000 | 0.0 | - |
| 1.9408 | 17050 | 0.0 | - |
| 1.9465 | 17100 | 0.0 | - |
| 1.9522 | 17150 | 0.0 | - |
| 1.9579 | 17200 | 0.0 | - |
| 1.9636 | 17250 | 0.0 | - |
| 1.9693 | 17300 | 0.0 | - |
| 1.9750 | 17350 | 0.0 | - |
| 1.9806 | 17400 | 0.0 | - |
| 1.9863 | 17450 | 0.0 | - |
| 1.9920 | 17500 | 0.0 | - |
| 1.9977 | 17550 | 0.0 | - |
| 2.0034 | 17600 | 0.0 | - |
| 2.0091 | 17650 | 0.0 | - |
| 2.0148 | 17700 | 0.0 | - |
| 2.0205 | 17750 | 0.0 | - |
| 2.0262 | 17800 | 0.0 | - |
| 2.0319 | 17850 | 0.0523 | - |
| 2.0376 | 17900 | 0.0 | - |
| 2.0433 | 17950 | 0.0 | - |
| 2.0489 | 18000 | 0.0 | - |
| 2.0546 | 18050 | 0.0 | - |
| 2.0603 | 18100 | 0.0 | - |
| 2.0660 | 18150 | 0.0 | - |
| 2.0717 | 18200 | 0.0 | - |
| 2.0774 | 18250 | 0.0 | - |
| 2.0831 | 18300 | 0.0 | - |
| 2.0888 | 18350 | 0.0 | - |
| 2.0945 | 18400 | 0.0 | - |
| 2.1002 | 18450 | 0.0 | - |
| 2.1059 | 18500 | 0.0 | - |
| 2.1116 | 18550 | 0.0 | - |
| 2.1172 | 18600 | 0.0 | - |
| 2.1229 | 18650 | 0.0 | - |
| 2.1286 | 18700 | 0.0 | - |
| 2.1343 | 18750 | 0.0 | - |
| 2.1400 | 18800 | 0.0 | - |
| 2.1457 | 18850 | 0.0 | - |
| 2.1514 | 18900 | 0.0 | - |
| 2.1571 | 18950 | 0.0 | - |
| 2.1628 | 19000 | 0.0 | - |
| 2.1685 | 19050 | 0.0 | - |
| 2.1742 | 19100 | 0.0 | - |
| 2.1799 | 19150 | 0.0 | - |
| 2.1855 | 19200 | 0.0 | - |
| 2.1912 | 19250 | 0.0 | - |
| 2.1969 | 19300 | 0.0 | - |
| 2.2026 | 19350 | 0.0 | - |
| 2.2083 | 19400 | 0.0 | - |
| 2.2140 | 19450 | 0.0 | - |
| 2.2197 | 19500 | 0.0 | - |
| 2.2254 | 19550 | 0.0 | - |
| 2.2311 | 19600 | 0.0 | - |
| 2.2368 | 19650 | 0.0 | - |
| 2.2425 | 19700 | 0.0 | - |
| 2.2482 | 19750 | 0.0 | - |
| 2.2538 | 19800 | 0.0 | - |
| 2.2595 | 19850 | 0.0 | - |
| 2.2652 | 19900 | 0.0 | - |
| 2.2709 | 19950 | 0.0 | - |
| 2.2766 | 20000 | 0.0 | - |
| 2.2823 | 20050 | 0.0 | - |
| 2.2880 | 20100 | 0.0 | - |
| 2.2937 | 20150 | 0.0 | - |
| 2.2994 | 20200 | 0.0 | - |
| 2.3051 | 20250 | 0.0 | - |
| 2.3108 | 20300 | 0.0 | - |
| 2.3164 | 20350 | 0.0 | - |
| 2.3221 | 20400 | 0.0 | - |
| 2.3278 | 20450 | 0.0 | - |
| 2.3335 | 20500 | 0.0 | - |
| 2.3392 | 20550 | 0.0 | - |
| 2.3449 | 20600 | 0.0 | - |
| 2.3506 | 20650 | 0.0 | - |
| 2.3563 | 20700 | 0.0 | - |
| 2.3620 | 20750 | 0.0 | - |
| 2.3677 | 20800 | 0.0 | - |
| 2.3734 | 20850 | 0.0 | - |
| 2.3791 | 20900 | 0.0 | - |
| 2.3847 | 20950 | 0.0 | - |
| 2.3904 | 21000 | 0.0 | - |
| 2.3961 | 21050 | 0.0 | - |
| 2.4018 | 21100 | 0.0 | - |
| 2.4075 | 21150 | 0.0 | - |
| 2.4132 | 21200 | 0.0 | - |
| 2.4189 | 21250 | 0.0 | - |
| 2.4246 | 21300 | 0.0 | - |
| 2.4303 | 21350 | 0.0 | - |
| 2.4360 | 21400 | 0.0 | - |
| 2.4417 | 21450 | 0.0 | - |
| 2.4474 | 21500 | 0.0 | - |
| 2.4530 | 21550 | 0.0 | - |
| 2.4587 | 21600 | 0.0 | - |
| 2.4644 | 21650 | 0.0 | - |
| 2.4701 | 21700 | 0.0 | - |
| 2.4758 | 21750 | 0.0 | - |
| 2.4815 | 21800 | 0.0 | - |
| 2.4872 | 21850 | 0.0 | - |
| 2.4929 | 21900 | 0.0 | - |
| 2.4986 | 21950 | 0.0 | - |
| 2.5043 | 22000 | 0.0 | - |
| 2.5100 | 22050 | 0.0 | - |
| 2.5157 | 22100 | 0.0 | - |
| 2.5213 | 22150 | 0.0 | - |
| 2.5270 | 22200 | 0.0 | - |
| 2.5327 | 22250 | 0.0 | - |
| 2.5384 | 22300 | 0.0 | - |
| 2.5441 | 22350 | 0.0 | - |
| 2.5498 | 22400 | 0.0 | - |
| 2.5555 | 22450 | 0.0 | - |
| 2.5612 | 22500 | 0.0 | - |
| 2.5669 | 22550 | 0.0 | - |
| 2.5726 | 22600 | 0.0 | - |
| 2.5783 | 22650 | 0.0 | - |
| 2.5839 | 22700 | 0.0 | - |
| 2.5896 | 22750 | 0.0 | - |
| 2.5953 | 22800 | 0.0 | - |
| 2.6010 | 22850 | 0.0 | - |
| 2.6067 | 22900 | 0.0 | - |
| 2.6124 | 22950 | 0.0 | - |
| 2.6181 | 23000 | 0.0 | - |
| 2.6238 | 23050 | 0.0 | - |
| 2.6295 | 23100 | 0.0 | - |
| 2.6352 | 23150 | 0.0 | - |
| 2.6409 | 23200 | 0.0 | - |
| 2.6466 | 23250 | 0.0 | - |
| 2.6522 | 23300 | 0.0 | - |
| 2.6579 | 23350 | 0.0 | - |
| 2.6636 | 23400 | 0.0 | - |
| 2.6693 | 23450 | 0.0 | - |
| 2.6750 | 23500 | 0.0 | - |
| 2.6807 | 23550 | 0.0 | - |
| 2.6864 | 23600 | 0.0 | - |
| 2.6921 | 23650 | 0.0 | - |
| 2.6978 | 23700 | 0.0 | - |
| 2.7035 | 23750 | 0.0 | - |
| 2.7092 | 23800 | 0.0 | - |
| 2.7149 | 23850 | 0.0 | - |
| 2.7205 | 23900 | 0.0 | - |
| 2.7262 | 23950 | 0.0 | - |
| 2.7319 | 24000 | 0.0 | - |
| 2.7376 | 24050 | 0.0 | - |
| 2.7433 | 24100 | 0.0 | - |
| 2.7490 | 24150 | 0.0 | - |
| 2.7547 | 24200 | 0.0 | - |
| 2.7604 | 24250 | 0.0 | - |
| 2.7661 | 24300 | 0.0 | - |
| 2.7718 | 24350 | 0.0 | - |
| 2.7775 | 24400 | 0.0 | - |
| 2.7832 | 24450 | 0.0 | - |
| 2.7888 | 24500 | 0.0 | - |
| 2.7945 | 24550 | 0.0 | - |
| 2.8002 | 24600 | 0.0 | - |
| 2.8059 | 24650 | 0.0 | - |
| 2.8116 | 24700 | 0.0 | - |
| 2.8173 | 24750 | 0.0 | - |
| 2.8230 | 24800 | 0.0 | - |
| 2.8287 | 24850 | 0.0 | - |
| 2.8344 | 24900 | 0.0 | - |
| 2.8401 | 24950 | 0.0 | - |
| 2.8458 | 25000 | 0.0 | - |
| 2.8515 | 25050 | 0.0 | - |
| 2.8571 | 25100 | 0.0 | - |
| 2.8628 | 25150 | 0.0 | - |
| 2.8685 | 25200 | 0.0 | - |
| 2.8742 | 25250 | 0.0 | - |
| 2.8799 | 25300 | 0.0 | - |
| 2.8856 | 25350 | 0.0 | - |
| 2.8913 | 25400 | 0.0 | - |
| 2.8970 | 25450 | 0.0 | - |
| 2.9027 | 25500 | 0.0 | - |
| 2.9084 | 25550 | 0.0 | - |
| 2.9141 | 25600 | 0.0 | - |
| 2.9197 | 25650 | 0.0 | - |
| 2.9254 | 25700 | 0.0 | - |
| 2.9311 | 25750 | 0.0 | - |
| 2.9368 | 25800 | 0.0 | - |
| 2.9425 | 25850 | 0.0 | - |
| 2.9482 | 25900 | 0.0 | - |
| 2.9539 | 25950 | 0.0 | - |
| 2.9596 | 26000 | 0.0 | - |
| 2.9653 | 26050 | 0.0 | - |
| 2.9710 | 26100 | 0.0 | - |
| 2.9767 | 26150 | 0.0 | - |
| 2.9824 | 26200 | 0.0 | - |
| 2.9880 | 26250 | 0.0 | - |
| 2.9937 | 26300 | 0.0 | - |
| 2.9994 | 26350 | 0.0 | - |
### Framework Versions
- Python: 3.10.12
- SetFit: 1.0.3
- Sentence Transformers: 3.3.1
- Transformers: 4.41.2
- PyTorch: 2.1.0+cu118
- Datasets: 2.20.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```