--- license: mit widget: - text: My name is Julien and I like to example_title: Julien - text: My name is Merve and my favorite example_title: Merve base_model: distilgpt2 tags: - generated_from_trainer - code model-index: - name: distilgpt2-finetuned-python_code_instructions_18k_alpaca results: [] datasets: - iamtarun/python_code_instructions_18k_alpaca language: - en metrics: - accuracy library_name: transformers pipeline_tag: text-generation --- # distilgpt2-finetuned-python_code_instructions_18k_alpaca This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.5063 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.7264 | 1.0 | 3861 | 1.5890 | | 1.6046 | 2.0 | 7722 | 1.5214 | | 1.5359 | 3.0 | 11583 | 1.5063 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2