Vision-CAIR
commited on
Commit
•
7a02f27
1
Parent(s):
dc2b1a4
Upload folder using huggingface_hub
Browse files- __init__.py +7 -1
- __pycache__/__init__.cpython-310.pyc +0 -0
- __pycache__/blip_processors.cpython-310.pyc +0 -0
- __pycache__/clip_vision_encoder.cpython-310.pyc +0 -0
- __pycache__/config.cpython-310.pyc +0 -0
- __pycache__/mini_gpt4_llama_v2.cpython-310.pyc +0 -0
- __pycache__/randaugment.cpython-310.pyc +0 -0
- __pycache__/registry.cpython-310.pyc +0 -0
- blip_processors.py +164 -0
- randaugment.py +398 -0
- registry.py +15 -15
__init__.py
CHANGED
@@ -11,16 +11,22 @@ from omegaconf import OmegaConf
|
|
11 |
|
12 |
from minigpt4_video.registry import registry
|
13 |
from minigpt4_video.base_model import BaseModel
|
14 |
-
from minigpt4_video.blip2 import Blip2Base
|
15 |
from minigpt4_video.base_processor import BaseProcessor
|
|
|
|
|
|
|
|
|
|
|
16 |
from minigpt4_video.mini_gpt4_llama_v2 import MiniGPT4_Video
|
17 |
|
18 |
|
|
|
19 |
__all__ = [
|
20 |
"load_model",
|
21 |
"BaseModel",
|
22 |
"Blip2Base",
|
23 |
"MiniGPT4_Video",
|
|
|
24 |
]
|
25 |
|
26 |
|
|
|
11 |
|
12 |
from minigpt4_video.registry import registry
|
13 |
from minigpt4_video.base_model import BaseModel
|
|
|
14 |
from minigpt4_video.base_processor import BaseProcessor
|
15 |
+
from minigpt4_video.blip_processors import *
|
16 |
+
from minigpt4_video.blip2 import Blip2Base
|
17 |
+
from minigpt4_video.clip_vision_encoder import *
|
18 |
+
from minigpt4_video.config import *
|
19 |
+
from minigpt4_video.eva_vit import *
|
20 |
from minigpt4_video.mini_gpt4_llama_v2 import MiniGPT4_Video
|
21 |
|
22 |
|
23 |
+
|
24 |
__all__ = [
|
25 |
"load_model",
|
26 |
"BaseModel",
|
27 |
"Blip2Base",
|
28 |
"MiniGPT4_Video",
|
29 |
+
|
30 |
]
|
31 |
|
32 |
|
__pycache__/__init__.cpython-310.pyc
CHANGED
Binary files a/__pycache__/__init__.cpython-310.pyc and b/__pycache__/__init__.cpython-310.pyc differ
|
|
__pycache__/blip_processors.cpython-310.pyc
ADDED
Binary file (4.36 kB). View file
|
|
__pycache__/clip_vision_encoder.cpython-310.pyc
ADDED
Binary file (2.97 kB). View file
|
|
__pycache__/config.cpython-310.pyc
ADDED
Binary file (12.3 kB). View file
|
|
__pycache__/mini_gpt4_llama_v2.cpython-310.pyc
CHANGED
Binary files a/__pycache__/mini_gpt4_llama_v2.cpython-310.pyc and b/__pycache__/mini_gpt4_llama_v2.cpython-310.pyc differ
|
|
__pycache__/randaugment.cpython-310.pyc
ADDED
Binary file (12.1 kB). View file
|
|
__pycache__/registry.cpython-310.pyc
CHANGED
Binary files a/__pycache__/registry.cpython-310.pyc and b/__pycache__/registry.cpython-310.pyc differ
|
|
blip_processors.py
ADDED
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Copyright (c) 2022, salesforce.com, inc.
|
3 |
+
All rights reserved.
|
4 |
+
SPDX-License-Identifier: BSD-3-Clause
|
5 |
+
For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
6 |
+
"""
|
7 |
+
|
8 |
+
import re
|
9 |
+
|
10 |
+
from minigpt4_video.registry import registry
|
11 |
+
from minigpt4_video.base_processor import BaseProcessor
|
12 |
+
from minigpt4_video.randaugment import RandomAugment
|
13 |
+
from omegaconf import OmegaConf
|
14 |
+
from torchvision import transforms
|
15 |
+
from torchvision.transforms.functional import InterpolationMode
|
16 |
+
|
17 |
+
|
18 |
+
class BlipImageBaseProcessor(BaseProcessor):
|
19 |
+
def __init__(self, mean=None, std=None):
|
20 |
+
if mean is None:
|
21 |
+
mean = (0.48145466, 0.4578275, 0.40821073)
|
22 |
+
if std is None:
|
23 |
+
std = (0.26862954, 0.26130258, 0.27577711)
|
24 |
+
|
25 |
+
|
26 |
+
segment_mean = (0.485, 0.456, 0.406)
|
27 |
+
segment_std = (0.229, 0.224, 0.225)
|
28 |
+
|
29 |
+
self.normalize = transforms.Normalize(segment_mean, segment_std)
|
30 |
+
|
31 |
+
|
32 |
+
@registry.register_processor("blip_caption")
|
33 |
+
class BlipCaptionProcessor(BaseProcessor):
|
34 |
+
def __init__(self, prompt="", max_words=50):
|
35 |
+
self.prompt = prompt
|
36 |
+
self.max_words = max_words
|
37 |
+
|
38 |
+
def __call__(self, caption):
|
39 |
+
caption = self.prompt + self.pre_caption(caption)
|
40 |
+
|
41 |
+
return caption
|
42 |
+
|
43 |
+
@classmethod
|
44 |
+
def from_config(cls, cfg=None):
|
45 |
+
if cfg is None:
|
46 |
+
cfg = OmegaConf.create()
|
47 |
+
|
48 |
+
prompt = cfg.get("prompt", "")
|
49 |
+
max_words = cfg.get("max_words", 50)
|
50 |
+
|
51 |
+
return cls(prompt=prompt, max_words=max_words)
|
52 |
+
|
53 |
+
def pre_caption(self, caption):
|
54 |
+
caption = re.sub(
|
55 |
+
r"([.!\"()*#:;~])",
|
56 |
+
" ",
|
57 |
+
caption.lower(),
|
58 |
+
)
|
59 |
+
caption = re.sub(
|
60 |
+
r"\s{2,}",
|
61 |
+
" ",
|
62 |
+
caption,
|
63 |
+
)
|
64 |
+
caption = caption.rstrip("\n")
|
65 |
+
caption = caption.strip(" ")
|
66 |
+
|
67 |
+
# truncate caption
|
68 |
+
caption_words = caption.split(" ")
|
69 |
+
if len(caption_words) > self.max_words:
|
70 |
+
caption = " ".join(caption_words[: self.max_words])
|
71 |
+
|
72 |
+
return caption
|
73 |
+
|
74 |
+
|
75 |
+
@registry.register_processor("blip2_image_train")
|
76 |
+
class Blip2ImageTrainProcessor(BlipImageBaseProcessor):
|
77 |
+
def __init__(self, image_size=224, mean=None, std=None, min_scale=0.5, max_scale=1.0):
|
78 |
+
super().__init__(mean=mean, std=std)
|
79 |
+
|
80 |
+
# self.transform = transforms.Compose(
|
81 |
+
# [
|
82 |
+
# transforms.RandomResizedCrop(
|
83 |
+
# image_size,
|
84 |
+
# scale=(min_scale, max_scale),
|
85 |
+
# interpolation=InterpolationMode.BICUBIC,
|
86 |
+
# ),
|
87 |
+
# transforms.ToTensor(),
|
88 |
+
# self.normalize,
|
89 |
+
# ]
|
90 |
+
# )
|
91 |
+
self.transform = transforms.Compose([
|
92 |
+
transforms.Resize(
|
93 |
+
(image_size, image_size), interpolation=InterpolationMode.BICUBIC
|
94 |
+
),
|
95 |
+
transforms.ToTensor(),
|
96 |
+
self.normalize,
|
97 |
+
]
|
98 |
+
)
|
99 |
+
|
100 |
+
# ### segment anything
|
101 |
+
# '''
|
102 |
+
# x = (x - self.pixel_mean) / self.pixel_std
|
103 |
+
|
104 |
+
# # Pad
|
105 |
+
# h, w = x.shape[-2:]
|
106 |
+
# padh = self.image_encoder.img_size - h
|
107 |
+
# padw = self.image_encoder.img_size - w
|
108 |
+
# x = F.pad(x, (0, padw, 0, padh))
|
109 |
+
# '''
|
110 |
+
|
111 |
+
def __call__(self, item):
|
112 |
+
return self.transform(item)
|
113 |
+
|
114 |
+
@classmethod
|
115 |
+
def from_config(cls, cfg=None):
|
116 |
+
if cfg is None:
|
117 |
+
cfg = OmegaConf.create()
|
118 |
+
|
119 |
+
image_size = cfg.get("image_size", 224)
|
120 |
+
|
121 |
+
mean = cfg.get("mean", None)
|
122 |
+
std = cfg.get("std", None)
|
123 |
+
|
124 |
+
min_scale = cfg.get("min_scale", 0.5)
|
125 |
+
max_scale = cfg.get("max_scale", 1.0)
|
126 |
+
|
127 |
+
return cls(
|
128 |
+
image_size=image_size,
|
129 |
+
mean=mean,
|
130 |
+
std=std,
|
131 |
+
min_scale=min_scale,
|
132 |
+
max_scale=max_scale,
|
133 |
+
)
|
134 |
+
|
135 |
+
|
136 |
+
@registry.register_processor("blip2_image_eval")
|
137 |
+
class Blip2ImageEvalProcessor(BlipImageBaseProcessor):
|
138 |
+
def __init__(self, image_size=224, mean=None, std=None):
|
139 |
+
super().__init__(mean=mean, std=std)
|
140 |
+
|
141 |
+
self.transform = transforms.Compose(
|
142 |
+
[
|
143 |
+
transforms.Resize(
|
144 |
+
(image_size, image_size), interpolation=InterpolationMode.BICUBIC
|
145 |
+
),
|
146 |
+
transforms.ToTensor(),
|
147 |
+
self.normalize,
|
148 |
+
]
|
149 |
+
)
|
150 |
+
|
151 |
+
def __call__(self, item):
|
152 |
+
return self.transform(item)
|
153 |
+
|
154 |
+
@classmethod
|
155 |
+
def from_config(cls, cfg=None):
|
156 |
+
if cfg is None:
|
157 |
+
cfg = OmegaConf.create()
|
158 |
+
|
159 |
+
image_size = cfg.get("image_size", 224)
|
160 |
+
|
161 |
+
mean = cfg.get("mean", None)
|
162 |
+
std = cfg.get("std", None)
|
163 |
+
|
164 |
+
return cls(image_size=image_size, mean=mean, std=std)
|
randaugment.py
ADDED
@@ -0,0 +1,398 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Copyright (c) 2022, salesforce.com, inc.
|
3 |
+
All rights reserved.
|
4 |
+
SPDX-License-Identifier: BSD-3-Clause
|
5 |
+
For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
6 |
+
"""
|
7 |
+
|
8 |
+
import cv2
|
9 |
+
import numpy as np
|
10 |
+
|
11 |
+
import torch
|
12 |
+
|
13 |
+
|
14 |
+
## aug functions
|
15 |
+
def identity_func(img):
|
16 |
+
return img
|
17 |
+
|
18 |
+
|
19 |
+
def autocontrast_func(img, cutoff=0):
|
20 |
+
"""
|
21 |
+
same output as PIL.ImageOps.autocontrast
|
22 |
+
"""
|
23 |
+
n_bins = 256
|
24 |
+
|
25 |
+
def tune_channel(ch):
|
26 |
+
n = ch.size
|
27 |
+
cut = cutoff * n // 100
|
28 |
+
if cut == 0:
|
29 |
+
high, low = ch.max(), ch.min()
|
30 |
+
else:
|
31 |
+
hist = cv2.calcHist([ch], [0], None, [n_bins], [0, n_bins])
|
32 |
+
low = np.argwhere(np.cumsum(hist) > cut)
|
33 |
+
low = 0 if low.shape[0] == 0 else low[0]
|
34 |
+
high = np.argwhere(np.cumsum(hist[::-1]) > cut)
|
35 |
+
high = n_bins - 1 if high.shape[0] == 0 else n_bins - 1 - high[0]
|
36 |
+
if high <= low:
|
37 |
+
table = np.arange(n_bins)
|
38 |
+
else:
|
39 |
+
scale = (n_bins - 1) / (high - low)
|
40 |
+
offset = -low * scale
|
41 |
+
table = np.arange(n_bins) * scale + offset
|
42 |
+
table[table < 0] = 0
|
43 |
+
table[table > n_bins - 1] = n_bins - 1
|
44 |
+
table = table.clip(0, 255).astype(np.uint8)
|
45 |
+
return table[ch]
|
46 |
+
|
47 |
+
channels = [tune_channel(ch) for ch in cv2.split(img)]
|
48 |
+
out = cv2.merge(channels)
|
49 |
+
return out
|
50 |
+
|
51 |
+
|
52 |
+
def equalize_func(img):
|
53 |
+
"""
|
54 |
+
same output as PIL.ImageOps.equalize
|
55 |
+
PIL's implementation is different from cv2.equalize
|
56 |
+
"""
|
57 |
+
n_bins = 256
|
58 |
+
|
59 |
+
def tune_channel(ch):
|
60 |
+
hist = cv2.calcHist([ch], [0], None, [n_bins], [0, n_bins])
|
61 |
+
non_zero_hist = hist[hist != 0].reshape(-1)
|
62 |
+
step = np.sum(non_zero_hist[:-1]) // (n_bins - 1)
|
63 |
+
if step == 0:
|
64 |
+
return ch
|
65 |
+
n = np.empty_like(hist)
|
66 |
+
n[0] = step // 2
|
67 |
+
n[1:] = hist[:-1]
|
68 |
+
table = (np.cumsum(n) // step).clip(0, 255).astype(np.uint8)
|
69 |
+
return table[ch]
|
70 |
+
|
71 |
+
channels = [tune_channel(ch) for ch in cv2.split(img)]
|
72 |
+
out = cv2.merge(channels)
|
73 |
+
return out
|
74 |
+
|
75 |
+
|
76 |
+
def rotate_func(img, degree, fill=(0, 0, 0)):
|
77 |
+
"""
|
78 |
+
like PIL, rotate by degree, not radians
|
79 |
+
"""
|
80 |
+
H, W = img.shape[0], img.shape[1]
|
81 |
+
center = W / 2, H / 2
|
82 |
+
M = cv2.getRotationMatrix2D(center, degree, 1)
|
83 |
+
out = cv2.warpAffine(img, M, (W, H), borderValue=fill)
|
84 |
+
return out
|
85 |
+
|
86 |
+
|
87 |
+
def solarize_func(img, thresh=128):
|
88 |
+
"""
|
89 |
+
same output as PIL.ImageOps.posterize
|
90 |
+
"""
|
91 |
+
table = np.array([el if el < thresh else 255 - el for el in range(256)])
|
92 |
+
table = table.clip(0, 255).astype(np.uint8)
|
93 |
+
out = table[img]
|
94 |
+
return out
|
95 |
+
|
96 |
+
|
97 |
+
def color_func(img, factor):
|
98 |
+
"""
|
99 |
+
same output as PIL.ImageEnhance.Color
|
100 |
+
"""
|
101 |
+
## implementation according to PIL definition, quite slow
|
102 |
+
# degenerate = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)[:, :, np.newaxis]
|
103 |
+
# out = blend(degenerate, img, factor)
|
104 |
+
# M = (
|
105 |
+
# np.eye(3) * factor
|
106 |
+
# + np.float32([0.114, 0.587, 0.299]).reshape(3, 1) * (1. - factor)
|
107 |
+
# )[np.newaxis, np.newaxis, :]
|
108 |
+
M = np.float32(
|
109 |
+
[[0.886, -0.114, -0.114], [-0.587, 0.413, -0.587], [-0.299, -0.299, 0.701]]
|
110 |
+
) * factor + np.float32([[0.114], [0.587], [0.299]])
|
111 |
+
out = np.matmul(img, M).clip(0, 255).astype(np.uint8)
|
112 |
+
return out
|
113 |
+
|
114 |
+
|
115 |
+
def contrast_func(img, factor):
|
116 |
+
"""
|
117 |
+
same output as PIL.ImageEnhance.Contrast
|
118 |
+
"""
|
119 |
+
mean = np.sum(np.mean(img, axis=(0, 1)) * np.array([0.114, 0.587, 0.299]))
|
120 |
+
table = (
|
121 |
+
np.array([(el - mean) * factor + mean for el in range(256)])
|
122 |
+
.clip(0, 255)
|
123 |
+
.astype(np.uint8)
|
124 |
+
)
|
125 |
+
out = table[img]
|
126 |
+
return out
|
127 |
+
|
128 |
+
|
129 |
+
def brightness_func(img, factor):
|
130 |
+
"""
|
131 |
+
same output as PIL.ImageEnhance.Contrast
|
132 |
+
"""
|
133 |
+
table = (np.arange(256, dtype=np.float32) * factor).clip(0, 255).astype(np.uint8)
|
134 |
+
out = table[img]
|
135 |
+
return out
|
136 |
+
|
137 |
+
|
138 |
+
def sharpness_func(img, factor):
|
139 |
+
"""
|
140 |
+
The differences the this result and PIL are all on the 4 boundaries, the center
|
141 |
+
areas are same
|
142 |
+
"""
|
143 |
+
kernel = np.ones((3, 3), dtype=np.float32)
|
144 |
+
kernel[1][1] = 5
|
145 |
+
kernel /= 13
|
146 |
+
degenerate = cv2.filter2D(img, -1, kernel)
|
147 |
+
if factor == 0.0:
|
148 |
+
out = degenerate
|
149 |
+
elif factor == 1.0:
|
150 |
+
out = img
|
151 |
+
else:
|
152 |
+
out = img.astype(np.float32)
|
153 |
+
degenerate = degenerate.astype(np.float32)[1:-1, 1:-1, :]
|
154 |
+
out[1:-1, 1:-1, :] = degenerate + factor * (out[1:-1, 1:-1, :] - degenerate)
|
155 |
+
out = out.astype(np.uint8)
|
156 |
+
return out
|
157 |
+
|
158 |
+
|
159 |
+
def shear_x_func(img, factor, fill=(0, 0, 0)):
|
160 |
+
H, W = img.shape[0], img.shape[1]
|
161 |
+
M = np.float32([[1, factor, 0], [0, 1, 0]])
|
162 |
+
out = cv2.warpAffine(
|
163 |
+
img, M, (W, H), borderValue=fill, flags=cv2.INTER_LINEAR
|
164 |
+
).astype(np.uint8)
|
165 |
+
return out
|
166 |
+
|
167 |
+
|
168 |
+
def translate_x_func(img, offset, fill=(0, 0, 0)):
|
169 |
+
"""
|
170 |
+
same output as PIL.Image.transform
|
171 |
+
"""
|
172 |
+
H, W = img.shape[0], img.shape[1]
|
173 |
+
M = np.float32([[1, 0, -offset], [0, 1, 0]])
|
174 |
+
out = cv2.warpAffine(
|
175 |
+
img, M, (W, H), borderValue=fill, flags=cv2.INTER_LINEAR
|
176 |
+
).astype(np.uint8)
|
177 |
+
return out
|
178 |
+
|
179 |
+
|
180 |
+
def translate_y_func(img, offset, fill=(0, 0, 0)):
|
181 |
+
"""
|
182 |
+
same output as PIL.Image.transform
|
183 |
+
"""
|
184 |
+
H, W = img.shape[0], img.shape[1]
|
185 |
+
M = np.float32([[1, 0, 0], [0, 1, -offset]])
|
186 |
+
out = cv2.warpAffine(
|
187 |
+
img, M, (W, H), borderValue=fill, flags=cv2.INTER_LINEAR
|
188 |
+
).astype(np.uint8)
|
189 |
+
return out
|
190 |
+
|
191 |
+
|
192 |
+
def posterize_func(img, bits):
|
193 |
+
"""
|
194 |
+
same output as PIL.ImageOps.posterize
|
195 |
+
"""
|
196 |
+
out = np.bitwise_and(img, np.uint8(255 << (8 - bits)))
|
197 |
+
return out
|
198 |
+
|
199 |
+
|
200 |
+
def shear_y_func(img, factor, fill=(0, 0, 0)):
|
201 |
+
H, W = img.shape[0], img.shape[1]
|
202 |
+
M = np.float32([[1, 0, 0], [factor, 1, 0]])
|
203 |
+
out = cv2.warpAffine(
|
204 |
+
img, M, (W, H), borderValue=fill, flags=cv2.INTER_LINEAR
|
205 |
+
).astype(np.uint8)
|
206 |
+
return out
|
207 |
+
|
208 |
+
|
209 |
+
def cutout_func(img, pad_size, replace=(0, 0, 0)):
|
210 |
+
replace = np.array(replace, dtype=np.uint8)
|
211 |
+
H, W = img.shape[0], img.shape[1]
|
212 |
+
rh, rw = np.random.random(2)
|
213 |
+
pad_size = pad_size // 2
|
214 |
+
ch, cw = int(rh * H), int(rw * W)
|
215 |
+
x1, x2 = max(ch - pad_size, 0), min(ch + pad_size, H)
|
216 |
+
y1, y2 = max(cw - pad_size, 0), min(cw + pad_size, W)
|
217 |
+
out = img.copy()
|
218 |
+
out[x1:x2, y1:y2, :] = replace
|
219 |
+
return out
|
220 |
+
|
221 |
+
|
222 |
+
### level to args
|
223 |
+
def enhance_level_to_args(MAX_LEVEL):
|
224 |
+
def level_to_args(level):
|
225 |
+
return ((level / MAX_LEVEL) * 1.8 + 0.1,)
|
226 |
+
|
227 |
+
return level_to_args
|
228 |
+
|
229 |
+
|
230 |
+
def shear_level_to_args(MAX_LEVEL, replace_value):
|
231 |
+
def level_to_args(level):
|
232 |
+
level = (level / MAX_LEVEL) * 0.3
|
233 |
+
if np.random.random() > 0.5:
|
234 |
+
level = -level
|
235 |
+
return (level, replace_value)
|
236 |
+
|
237 |
+
return level_to_args
|
238 |
+
|
239 |
+
|
240 |
+
def translate_level_to_args(translate_const, MAX_LEVEL, replace_value):
|
241 |
+
def level_to_args(level):
|
242 |
+
level = (level / MAX_LEVEL) * float(translate_const)
|
243 |
+
if np.random.random() > 0.5:
|
244 |
+
level = -level
|
245 |
+
return (level, replace_value)
|
246 |
+
|
247 |
+
return level_to_args
|
248 |
+
|
249 |
+
|
250 |
+
def cutout_level_to_args(cutout_const, MAX_LEVEL, replace_value):
|
251 |
+
def level_to_args(level):
|
252 |
+
level = int((level / MAX_LEVEL) * cutout_const)
|
253 |
+
return (level, replace_value)
|
254 |
+
|
255 |
+
return level_to_args
|
256 |
+
|
257 |
+
|
258 |
+
def solarize_level_to_args(MAX_LEVEL):
|
259 |
+
def level_to_args(level):
|
260 |
+
level = int((level / MAX_LEVEL) * 256)
|
261 |
+
return (level,)
|
262 |
+
|
263 |
+
return level_to_args
|
264 |
+
|
265 |
+
|
266 |
+
def none_level_to_args(level):
|
267 |
+
return ()
|
268 |
+
|
269 |
+
|
270 |
+
def posterize_level_to_args(MAX_LEVEL):
|
271 |
+
def level_to_args(level):
|
272 |
+
level = int((level / MAX_LEVEL) * 4)
|
273 |
+
return (level,)
|
274 |
+
|
275 |
+
return level_to_args
|
276 |
+
|
277 |
+
|
278 |
+
def rotate_level_to_args(MAX_LEVEL, replace_value):
|
279 |
+
def level_to_args(level):
|
280 |
+
level = (level / MAX_LEVEL) * 30
|
281 |
+
if np.random.random() < 0.5:
|
282 |
+
level = -level
|
283 |
+
return (level, replace_value)
|
284 |
+
|
285 |
+
return level_to_args
|
286 |
+
|
287 |
+
|
288 |
+
func_dict = {
|
289 |
+
"Identity": identity_func,
|
290 |
+
"AutoContrast": autocontrast_func,
|
291 |
+
"Equalize": equalize_func,
|
292 |
+
"Rotate": rotate_func,
|
293 |
+
"Solarize": solarize_func,
|
294 |
+
"Color": color_func,
|
295 |
+
"Contrast": contrast_func,
|
296 |
+
"Brightness": brightness_func,
|
297 |
+
"Sharpness": sharpness_func,
|
298 |
+
"ShearX": shear_x_func,
|
299 |
+
"TranslateX": translate_x_func,
|
300 |
+
"TranslateY": translate_y_func,
|
301 |
+
"Posterize": posterize_func,
|
302 |
+
"ShearY": shear_y_func,
|
303 |
+
}
|
304 |
+
|
305 |
+
translate_const = 10
|
306 |
+
MAX_LEVEL = 10
|
307 |
+
replace_value = (128, 128, 128)
|
308 |
+
arg_dict = {
|
309 |
+
"Identity": none_level_to_args,
|
310 |
+
"AutoContrast": none_level_to_args,
|
311 |
+
"Equalize": none_level_to_args,
|
312 |
+
"Rotate": rotate_level_to_args(MAX_LEVEL, replace_value),
|
313 |
+
"Solarize": solarize_level_to_args(MAX_LEVEL),
|
314 |
+
"Color": enhance_level_to_args(MAX_LEVEL),
|
315 |
+
"Contrast": enhance_level_to_args(MAX_LEVEL),
|
316 |
+
"Brightness": enhance_level_to_args(MAX_LEVEL),
|
317 |
+
"Sharpness": enhance_level_to_args(MAX_LEVEL),
|
318 |
+
"ShearX": shear_level_to_args(MAX_LEVEL, replace_value),
|
319 |
+
"TranslateX": translate_level_to_args(translate_const, MAX_LEVEL, replace_value),
|
320 |
+
"TranslateY": translate_level_to_args(translate_const, MAX_LEVEL, replace_value),
|
321 |
+
"Posterize": posterize_level_to_args(MAX_LEVEL),
|
322 |
+
"ShearY": shear_level_to_args(MAX_LEVEL, replace_value),
|
323 |
+
}
|
324 |
+
|
325 |
+
|
326 |
+
class RandomAugment(object):
|
327 |
+
def __init__(self, N=2, M=10, isPIL=False, augs=[]):
|
328 |
+
self.N = N
|
329 |
+
self.M = M
|
330 |
+
self.isPIL = isPIL
|
331 |
+
if augs:
|
332 |
+
self.augs = augs
|
333 |
+
else:
|
334 |
+
self.augs = list(arg_dict.keys())
|
335 |
+
|
336 |
+
def get_random_ops(self):
|
337 |
+
sampled_ops = np.random.choice(self.augs, self.N)
|
338 |
+
return [(op, 0.5, self.M) for op in sampled_ops]
|
339 |
+
|
340 |
+
def __call__(self, img):
|
341 |
+
if self.isPIL:
|
342 |
+
img = np.array(img)
|
343 |
+
ops = self.get_random_ops()
|
344 |
+
for name, prob, level in ops:
|
345 |
+
if np.random.random() > prob:
|
346 |
+
continue
|
347 |
+
args = arg_dict[name](level)
|
348 |
+
img = func_dict[name](img, *args)
|
349 |
+
return img
|
350 |
+
|
351 |
+
|
352 |
+
class VideoRandomAugment(object):
|
353 |
+
def __init__(self, N=2, M=10, p=0.0, tensor_in_tensor_out=True, augs=[]):
|
354 |
+
self.N = N
|
355 |
+
self.M = M
|
356 |
+
self.p = p
|
357 |
+
self.tensor_in_tensor_out = tensor_in_tensor_out
|
358 |
+
if augs:
|
359 |
+
self.augs = augs
|
360 |
+
else:
|
361 |
+
self.augs = list(arg_dict.keys())
|
362 |
+
|
363 |
+
def get_random_ops(self):
|
364 |
+
sampled_ops = np.random.choice(self.augs, self.N, replace=False)
|
365 |
+
return [(op, self.M) for op in sampled_ops]
|
366 |
+
|
367 |
+
def __call__(self, frames):
|
368 |
+
assert (
|
369 |
+
frames.shape[-1] == 3
|
370 |
+
), "Expecting last dimension for 3-channels RGB (b, h, w, c)."
|
371 |
+
|
372 |
+
if self.tensor_in_tensor_out:
|
373 |
+
frames = frames.numpy().astype(np.uint8)
|
374 |
+
|
375 |
+
num_frames = frames.shape[0]
|
376 |
+
|
377 |
+
ops = num_frames * [self.get_random_ops()]
|
378 |
+
apply_or_not = num_frames * [np.random.random(size=self.N) > self.p]
|
379 |
+
|
380 |
+
frames = torch.stack(
|
381 |
+
list(map(self._aug, frames, ops, apply_or_not)), dim=0
|
382 |
+
).float()
|
383 |
+
|
384 |
+
return frames
|
385 |
+
|
386 |
+
def _aug(self, img, ops, apply_or_not):
|
387 |
+
for i, (name, level) in enumerate(ops):
|
388 |
+
if not apply_or_not[i]:
|
389 |
+
continue
|
390 |
+
args = arg_dict[name](level)
|
391 |
+
img = func_dict[name](img, *args)
|
392 |
+
return torch.from_numpy(img)
|
393 |
+
|
394 |
+
|
395 |
+
if __name__ == "__main__":
|
396 |
+
a = RandomAugment()
|
397 |
+
img = np.random.randn(32, 32, 3)
|
398 |
+
a(img)
|
registry.py
CHANGED
@@ -98,12 +98,12 @@ class Registry:
|
|
98 |
# model_cls, BaseModel
|
99 |
# ), "All models must inherit BaseModel class"
|
100 |
|
101 |
-
if name in cls.mapping["model_name_mapping"]:
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
cls.mapping["model_name_mapping"][name] = model_cls
|
108 |
return model_cls
|
109 |
|
@@ -124,15 +124,15 @@ class Registry:
|
|
124 |
def wrap(processor_cls):
|
125 |
from minigpt4.processors import BaseProcessor
|
126 |
|
127 |
-
assert issubclass(
|
128 |
-
|
129 |
-
), "All processors must inherit BaseProcessor class"
|
130 |
-
if name in cls.mapping["processor_name_mapping"]:
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
cls.mapping["processor_name_mapping"][name] = processor_cls
|
137 |
return processor_cls
|
138 |
|
|
|
98 |
# model_cls, BaseModel
|
99 |
# ), "All models must inherit BaseModel class"
|
100 |
|
101 |
+
# if name in cls.mapping["model_name_mapping"]:
|
102 |
+
# raise KeyError(
|
103 |
+
# "Name '{}' already registered for {}.".format(
|
104 |
+
# name, cls.mapping["model_name_mapping"][name]
|
105 |
+
# )
|
106 |
+
# )
|
107 |
cls.mapping["model_name_mapping"][name] = model_cls
|
108 |
return model_cls
|
109 |
|
|
|
124 |
def wrap(processor_cls):
|
125 |
from minigpt4.processors import BaseProcessor
|
126 |
|
127 |
+
# assert issubclass(
|
128 |
+
# processor_cls, BaseProcessor
|
129 |
+
# ), "All processors must inherit BaseProcessor class"
|
130 |
+
# if name in cls.mapping["processor_name_mapping"]:
|
131 |
+
# raise KeyError(
|
132 |
+
# "Name '{}' already registered for {}.".format(
|
133 |
+
# name, cls.mapping["processor_name_mapping"][name]
|
134 |
+
# )
|
135 |
+
# )
|
136 |
cls.mapping["processor_name_mapping"][name] = processor_cls
|
137 |
return processor_cls
|
138 |
|