import logging
import random
import torch
import webvtt
import os
import cv2
from torchvision import transforms
import soundfile as sf
import moviepy.editor as mp
from PIL import Image
from moviepy.editor import VideoFileClip
import torch
import random
import torch.backends.cudnn as cudnn
import torch
from torch.cuda.amp import autocast as autocast
import torch.nn as nn
from minigpt4_video.registry import registry
from minigpt4_video.blip2 import Blip2Base, disabled_train
from minigpt4_video.conversation import Conversation, SeparatorStyle, StoppingCriteriaList, StoppingCriteriaSub
from transformers import LlamaTokenizer
from transformers import BitsAndBytesConfig
from transformers import AutoConfig, AutoTokenizer
from peft import (
LoraConfig,
get_peft_model,
get_peft_model_state_dict,
prepare_model_for_int8_training,
set_peft_model_state_dict,
)
import time
import numpy as np
import os
from transformers import PretrainedConfig
from transformers import PreTrainedModel
from minigpt4_video.conversation import CONV_VISION
import cv2
def extract_audio(video_path, audio_path):
video_clip = mp.VideoFileClip(video_path)
audio_clip = video_clip.audio
audio_clip.write_audiofile(audio_path, codec="libmp3lame", bitrate="320k")
def generate_subtitles(video_path):
video_id=video_path.split('/')[-1].split('.')[0]
audio_path = f"workspace/inference_subtitles/mp3/{video_id}"+'.mp3'
os.makedirs("workspace/inference_subtitles/mp3",exist_ok=True)
try:
extract_audio(video_path,audio_path)
print("successfully extracted")
os.system(f"whisper {audio_path} --language English --model large --output_format vtt --output_dir workspace/inference_subtitles/")
# remove the audio file
os.system(f"rm {audio_path}")
print("subtitle successfully generated")
return f"workspace/inference_subtitles/{video_id}"+'.vtt'
except Exception as e:
print("error",e)
print("error",video_path)
return None
class minigpt4_video_config(PretrainedConfig):
model_type="minigpt4_video"
PRETRAINED_MODEL_CONFIG_DICT = {
"minigpt4_video": "configs/models/minigpt4.yaml",
}
def __init__(
self,
omg_config:dict = {},
**kwargs,
):
for key, value in omg_config.items():
setattr(self, key, value)
super().__init__(**kwargs)
@registry.register_model("mini_gpt4_llama_v2")
class MiniGPT4_Video(Blip2Base, PreTrainedModel):
"""
BLIP2 GPT-LLAMA model.
"""
PRETRAINED_MODEL_CONFIG_DICT = {
"minigpt4_video": "minigpt4/configs/models/minigpt4.yaml",
}
config_class=minigpt4_video_config
def __init__(
self,
cfg={},
):
## loop through the config minigpt4_video_config object and set the attributes
# if isinstance(cfg, minigpt4_video_config):
try:
cfg = cfg.to_dict()
except:
pass
for key, value in cfg.items():
try:
setattr(self, key, value)
except:
print(f"Error setting attribute {key} with value {value}")
PreTrainedModel.__init__(self, minigpt4_video_config(cfg))
Blip2Base.__init__(self)
vis_processor_cfg = {"name": "blip2_image_train","image_size": 224}
self.vis_processor = registry.get_processor_class(vis_processor_cfg["name"]).from_config(vis_processor_cfg)
self.CONV_VISION = CONV_VISION
if "Mistral" in self.llama_model:
from minigpt4_video.modeling_mistral import MistralForCausalLM as llm_model
print("Mistral model")
self.model_type = "Mistral"
else:
from minigpt4_video.modeling_llama_v2 import LlamaForCausalLM as llm_model
print("Llama model")
self.model_type = "Llama"
self.tokenizer = self.init_tokenizer()
print("token pooling", self.token_pooling)
if self.freeze_vit:
# self.vit_precision="fp32"
print("vit precision", self.vit_precision)
self.visual_encoder, self.ln_vision = self.init_vision_encoder(
self.vit_model, self.img_size, self.drop_path_rate, self.use_grad_checkpoint, self.vit_precision
)
for name, param in self.visual_encoder.named_parameters():
param.requires_grad = False
self.visual_encoder = self.visual_encoder.eval()
self.visual_encoder.train = disabled_train
for name, param in self.ln_vision.named_parameters():
param.requires_grad = False
self.ln_vision = self.ln_vision.eval()
self.ln_vision.train = disabled_train
logging.info("freeze vision encoder")
print("freeze the vision encoder")
else:
self.vit_precision="fp32"
self.visual_encoder, self.ln_vision = self.init_vision_encoder(
self.vit_model, self.img_size, self.drop_path_rate, self.use_grad_checkpoint, self.vit_precision
)
print("unfreeze the vision encoder")
print('Loading VIT Done')
print('Loading LLAMA')
self.B_SYS, self.E_SYS = "<>\n", "\n<>\n\n"
token=os.environ.get("HF_TKN")
self.llama_tokenizer = LlamaTokenizer.from_pretrained(self.llama_model,use_fast=False,token=token) #
self.llama_tokenizer.pad_token = "$$"
# use fastv
self.use_fastv = False
print("self.low_resource",self.low_resource)
if self.low_resource:
self.llama_model = llm_model.from_pretrained(
self.llama_model,
torch_dtype=torch.float16,
# torch_dtype = torch.bfloat16,
load_in_8bit=True,
# device_map = "balanced"
# device_map="auto",
device_map={'':torch.cuda.current_device()},token=token
# device_map={'':0}
)
else:
self.llama_model = llm_model.from_pretrained(
self.llama_model,
torch_dtype=torch.float16,token=token
)
# self.llama_model.resize_token_embeddings(len(self.llama_tokenizer))
self.llama_model = prepare_model_for_int8_training(self.llama_model)
loraconfig = LoraConfig(
r=self.lora_r,
lora_alpha=self.lora_alpha,
target_modules=self.lora_target_modules,
lora_dropout=self.lora_dropout,
bias="none",
task_type="CAUSAL_LM"
)
self.llama_model = get_peft_model(self.llama_model, loraconfig)
self.llama_model.print_trainable_parameters()
if self.use_grad_checkpoint_llm:
self.llama_model.gradient_checkpointing_enable()
print('Loading LLAMA Done')
if self.token_pooling:
self.llama_proj = nn.Linear(
1408*4, self.llama_model.config.hidden_size
)
else:
self.llama_proj = nn.Linear(
1408, self.llama_model.config.hidden_size
)
if self.prompt_path:
with open(self.prompt_path, 'r') as f:
raw_prompts = f.read().splitlines()
filted_prompts = [raw_prompt for raw_prompt in raw_prompts if "" in raw_prompt]
self.prompt_list = [self.prompt_template.format(p) for p in filted_prompts]
print('Load {} training prompts'.format(len(self.prompt_list)))
print('Prompt Example \n{}'.format(random.choice(self.prompt_list)))
else:
self.prompt_list = []
def prepare_input(self,video_path,subtitle_path,instruction):
cap = cv2.VideoCapture(video_path)
if subtitle_path is not None:
# Load the VTT subtitle file
vtt_file = webvtt.read(subtitle_path)
print("subtitle loaded successfully")
clip = VideoFileClip(video_path)
total_num_frames = int(clip.duration * clip.fps)
# print("Video duration = ",clip.duration)
clip.close()
else :
# calculate the total number of frames in the video using opencv
total_num_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
if self.model_type == "Mistral":
max_images_length = 90
max_sub_len = 800
else:
max_images_length = 45
max_sub_len = 400
images = []
frame_count = 0
sampling_interval = int(total_num_frames / max_images_length)
if sampling_interval == 0:
sampling_interval = 1
img_placeholder = ""
subtitle_text_in_interval = ""
history_subtitles = {}
raw_frames=[]
number_of_words=0
transform=transforms.Compose([
transforms.ToPILImage(),
])
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
# Find the corresponding subtitle for the frame and combine the interval subtitles into one subtitle
# we choose 1 frame for every 2 seconds,so we need to combine the subtitles in the interval of 2 seconds
if subtitle_path is not None:
for subtitle in vtt_file:
sub=subtitle.text.replace('\n',' ')
if (subtitle.start_in_seconds <= (frame_count / int(clip.fps)) <= subtitle.end_in_seconds) and sub not in subtitle_text_in_interval:
if not history_subtitles.get(sub,False):
subtitle_text_in_interval+=sub+" "
history_subtitles[sub]=True
break
if frame_count % sampling_interval == 0:
raw_frames.append(Image.fromarray(cv2.cvtColor(frame.copy(), cv2.COLOR_BGR2RGB)))
frame = transform(frame[:,:,::-1]) # convert to RGB
frame = self.vis_processor(frame)
images.append(frame)
img_placeholder += ''
if subtitle_path is not None and subtitle_text_in_interval != "" and number_of_words< max_sub_len:
img_placeholder+=f'{subtitle_text_in_interval}'
number_of_words+=len(subtitle_text_in_interval.split(' '))
subtitle_text_in_interval = ""
frame_count += 1
if len(images) >= max_images_length:
break
while len(images) < max_images_length:
images.append(images[-1])
img_placeholder += ''
cap.release()
cv2.destroyAllWindows()
if len(images) == 0:
# skip the video if no frame is extracted
return None,None
images = torch.stack(images)
instruction = img_placeholder + '\n' + instruction
return images,instruction
def encode_img(self, image):
device = image.device
if len(image.shape) > 4:
image = image.reshape(-1, *image.shape[-3:]) # for video input flatten the batch and time dimension (4,50,3,224,224) -> (200,3,224,224)
with self.maybe_autocast():
image_embeds = self.ln_vision(self.visual_encoder(image)).to(device) # (200,3,224,224) -> (200,257,1408)
image_embeds = image_embeds[:,1:,:] # remove the first token (CLS) (200,256,1408)
bs, pn, hs = image_embeds.shape
if self.token_pooling: # concat the each 4 tokens into one token (200,64,5632)
image_embeds = image_embeds.view(bs, int(pn/4), int(hs*4)) # (200,64,5632)
inputs_llama = self.llama_proj(image_embeds) # project to llama input size (200,64,5632) -> (200,64,4096)
atts_llama = torch.ones(inputs_llama.size()[:-1], dtype=torch.long).to(image.device)
return inputs_llama, atts_llama
def get_context_emb(self, prompt, img_list):
img_device = img_list[0].device
prompt_segs = prompt.split('')
assert len(prompt_segs) == len(img_list) + 1, "Unmatched numbers of image placeholders and images."
seg_tokens = [
self.llama_tokenizer(
seg, return_tensors="pt", add_special_tokens=i==0).to(img_device).input_ids # only add bos to the first seg
for i, seg in enumerate(prompt_segs)
]
seg_embs = [self.embed_tokens(seg_t) for seg_t in seg_tokens]
mixed_embs = [emb for pair in zip(seg_embs[:-1], img_list) for emb in pair] + [seg_embs[-1]]
mixed_embs = torch.cat(mixed_embs, dim=1)
return mixed_embs
def prompt_wrap(self, img_embeds, atts_img, prompts, lengths=None):
if prompts is None or len(prompts) == 0:
# prompts is not provided, just return the original image embedding
return img_embeds, atts_img
elif img_embeds is None:
# prompt is provided but there is no image embedding. return the prompt embedding in right padding
self.llama_tokenizer.padding_side = "right"
prompt_tokens = self.llama_tokenizer(
prompts,
return_tensors="pt",
padding="max_length",
add_special_tokens=False
).to(self.device)
prompt_embeds = self.embed_tokens(prompt_tokens.input_ids)
atts_prompt = prompt_tokens.attention_mask
return prompt_embeds, atts_prompt
else:
# return the multi-modal embedding in right padding
emb_lists = []
if type(prompts) == str:
prompts = [prompts] * len(img_embeds)
for idx, (each_img_embed, each_prompt) in enumerate(zip(img_embeds, prompts)):
pn = each_img_embed.shape[-2]
if lengths is not None:
each_img_embed = each_img_embed.reshape(-1, each_img_embed.shape[-1])
each_img_embed = each_img_embed[:lengths[idx] * pn]
p_segs = each_prompt.split('')
interleave_emb = []
for idx, seg in enumerate(p_segs[:-1]):
p_tokens = self.llama_tokenizer(seg, return_tensors="pt", add_special_tokens=False).to(img_embeds.device)
p_embed = self.embed_tokens(p_tokens.input_ids)
interleave_emb.append(torch.cat([p_embed, each_img_embed[None][:, idx*pn:(idx+1)*pn]], dim=1))
wrapped_emb = torch.cat(interleave_emb, dim=1)
p_tokens = self.llama_tokenizer(p_segs[-1], return_tensors="pt", add_special_tokens=False).to(img_embeds.device)
p_embed = self.embed_tokens(p_tokens.input_ids)
wrapped_emb = torch.cat([wrapped_emb,p_embed], dim=1)
emb_lists.append(wrapped_emb)
emb_lens = [emb.shape[1] for emb in emb_lists]
pad_emb = self.embed_tokens(torch.tensor(self.llama_tokenizer.pad_token_id, device=img_embeds.device))
# max_length = max(emb_lens) if max(emb_lens) < self.max_context_len else self.max_context_len
max_length = self.max_context_len
wrapped_embs = pad_emb.expand(len(emb_lens), max_length, -1).clone()
wrapped_atts = torch.zeros([len(emb_lens), max_length], dtype=torch.int, device=img_embeds.device)
for i, emb in enumerate(emb_lists):
length = emb_lens[i] if emb_lens[i] < self.max_context_len else self.max_context_len
wrapped_embs[i, :length] = emb[:, :length]
wrapped_atts[i, :length] = 1
return wrapped_embs, wrapped_atts
def concat_emb_input_output(self, input_embs, input_atts, output_embs, output_atts):
"""
Concatenate the batched input embedding and batched output embedding together.
Both the input and the output embedding should be right padded.
"""
input_lens = []
cat_embs = []
cat_atts = []
for i in range(input_embs.size(0)):
input_len = input_atts[i].sum()
input_lens.append(input_len)
cat_embs.append(
torch.cat([
input_embs[i][:input_len],
output_embs[i],
input_embs[i][input_len:]
])
)
cat_atts.append(
torch.cat([
input_atts[i][:input_len],
output_atts[i],
input_atts[i][input_len:]
])
)
cat_embs = torch.stack(cat_embs)
cat_atts = torch.stack(cat_atts)
return cat_embs, cat_atts, input_lens
def get_conv_emb(self, conv_q, conv_a, conv_img):
"""concatenate conversation and make sure the model is only trained to regress the answer"""
regress_embs_list = []
targets_list = []
batch_size = len(conv_q)
for batch_idx in range(batch_size):
questions, answers = conv_q[batch_idx], conv_a[batch_idx]
assigned_imgs = conv_img[batch_idx]
questions = [self.prompt_wrap(
img_embeds=img,
atts_img=None,
prompts=[q],
lengths=[img.shape[1]] if img is not None else None) for q, img in zip(questions, assigned_imgs)]
q_embs = [emb for emb, _ in questions]
answers = [self.llama_tokenizer(a, return_tensors="pt", add_special_tokens=False).to(self.device) for a in answers]
cur_emb = []
cur_target = []
for i in range(len(questions)):
cur_emb.append(q_embs[i])
cur_target.append(torch.ones_like(q_embs[i][..., 0], dtype=torch.int) * -100)
cur_emb.append(self.embed_tokens(answers[i].input_ids))
cur_target.append(answers[i].input_ids)
cur_emb = torch.cat(cur_emb, dim=1)
cur_target = torch.cat(cur_target, dim=1)
regress_embs_list.append(cur_emb)
targets_list.append(cur_target)
max_len = min(max([target.shape[1] for target in targets_list]), self.max_txt_len)
regress_embeds = torch.zeros([batch_size, max_len, cur_emb.shape[-1]], device=self.device)
regress_attn = torch.zeros([batch_size, max_len], dtype=torch.int, device=self.device)
targets = torch.ones([batch_size, max_len], dtype=torch.long, device=self.device) * -100
for batch_idx in range(batch_size):
cur_len = regress_embs_list[batch_idx].shape[1]
regress_embeds[batch_idx, :cur_len] = regress_embs_list[batch_idx][0, :max_len]
regress_attn[batch_idx, :cur_len] = 1
targets[batch_idx, :cur_len] = targets_list[batch_idx][0, :max_len]
return regress_embeds, regress_attn, targets
def preparing_embedding(self, samples):
def remove_special_tokens(data):
# if "instruction_input" in data:
data = [instruct.replace(" [caption]","") for instruct in data]
data = [instruct.replace(" [vqa]","") for instruct in data]
data = [instruct.replace(" [grounding]","") for instruct in data]
data = [instruct.replace(" [identify]","") for instruct in data]
data = [instruct.replace(" [refer]","") for instruct in data]
return data
### prepare input tokens
if 'image' in samples:
img_embeds, img_atts = self.encode_img(samples["image"])
else:
img_embeds = img_atts = None
if 'conv_q' in samples:
# handeling conversation datasets
conv_q, conv_a = samples['conv_q'], samples['conv_a']
connect_sym = samples['connect_sym'][0]
conv_q = [q.split(connect_sym)for q in conv_q]
conv_a = [a.split(connect_sym) for a in conv_a]
conv_img = assign_imgs(conv_q, img_embeds)
if self.chat_template:
conv_q = [["[INST] " + item + "[/INST]" for item in items] for items in conv_q]
regress_embeds, regress_atts, part_targets = self.get_conv_emb(conv_q, conv_a, conv_img)
cond_embeds, cond_atts = regress_embeds[:, :0], regress_atts[:, :0]
else:
if "instruction_input" in samples:
instruction = samples["instruction_input"]
elif len(self.prompt_list) > 1:
instruction = random.choice(self.prompt_list)
else:
instruction = None
if self.remove_template:
instruction = remove_special_tokens(instruction)
if self.chat_template:
instruction = ["[INST] " + instruct + "[/INST]" for instruct in instruction]
if 'length' in samples:
# the input is a image train (like videos)
bsz, pn, hs = img_embeds.shape
img_embeds = img_embeds.reshape(len(samples['image']), -1, pn, hs) # (200,64,4096) -> (4,50,64,4096)
cond_embeds, cond_atts = self.prompt_wrap(img_embeds, img_atts, instruction, samples['length'])
else:
cond_embeds, cond_atts = self.prompt_wrap(img_embeds, img_atts, instruction)
### prepare target tokens
self.llama_tokenizer.padding_side = "right"
text = [t + self.end_sym for t in samples["answer"]]
regress_tokens = self.llama_tokenizer(
text,
return_tensors="pt",
padding="max_length",
truncation=True,
max_length=self.max_txt_len,
add_special_tokens=False
).to(self.device)
regress_token_ids = regress_tokens.input_ids
regress_atts = regress_tokens.attention_mask
part_targets = regress_token_ids.masked_fill(
regress_token_ids == self.llama_tokenizer.pad_token_id, -100
)
regress_embeds = self.embed_tokens(regress_token_ids)
return cond_embeds, cond_atts, regress_embeds, regress_atts, part_targets
def forward(self, samples, reduction="mean"):
# prepare the embedding to condition and the embedding to regress
cond_embeds, cond_atts, regress_embeds, regress_atts, part_targets = \
self.preparing_embedding(samples)
# concat the embedding to condition and the embedding to regress
inputs_embeds, attention_mask, input_lens = \
self.concat_emb_input_output(cond_embeds, cond_atts, regress_embeds, regress_atts)
# get bos token embedding
bos = torch.ones_like(part_targets[:, :1]) * self.llama_tokenizer.bos_token_id
bos_embeds = self.embed_tokens(bos)
bos_atts = attention_mask[:, :1]
# add bos token at the begining
inputs_embeds = torch.cat([bos_embeds, inputs_embeds], dim=1)
attention_mask = torch.cat([bos_atts, attention_mask], dim=1)
targets = torch.ones([inputs_embeds.shape[0], inputs_embeds.shape[1]],
dtype=torch.long).to(self.device).fill_(-100)
for i, target in enumerate(part_targets):
targets[i, input_lens[i]+1:input_lens[i]+len(target)+1] = target # plus 1 for bos
with self.maybe_autocast():
outputs = self.llama_model(
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
return_dict=True,
labels=targets,
reduction=reduction,
use_fastv=self.use_fastv
)
loss = outputs.loss
return {"loss": loss}
@torch.no_grad()
def generate(
self,
images,
texts,
use_nucleus_sampling=False,
num_beams=1,
max_new_tokens=20,
min_length=1,
top_p=0.9,
repetition_penalty=1.5,
length_penalty=1,
temperature=1,
do_sample=False,
stop_words_ids=[2],
lengths=None,
return_video_temporal_features=False,
img_embeds=None,
):
'''
function for generate test use
'''
stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(
stops=[torch.tensor([i]).to(self.device) for i in stop_words_ids])])
if img_embeds is None:
img_embeds, atts_img = self.encode_img(images.to(self.device))
else:
# Use images features from the input(4,45,64,5632)
img_embeds = img_embeds.reshape(-1, *img_embeds.shape[-2:])
img_embeds= img_embeds.to(self.device)
img_embeds = self.llama_proj(img_embeds) # project to llama input size (200,64,5632) -> (200,64,4096)
atts_img = torch.ones(img_embeds.size()[:-1], dtype=torch.long).to(self.device)
if lengths is not None:
image_lists = []
img_embeds = img_embeds.reshape(len(lengths), -1, img_embeds.shape[-2], img_embeds.shape[-1])
for idx, img_embed in enumerate(img_embeds):
image_lists.append([img_embed[i][None] for i in range(lengths[idx])])
else:
image_lists = [[image_emb[None]] for image_emb in img_embeds]
assert len(texts) == len(image_lists)
batch_embs = [self.get_context_emb(text, img_list) for text, img_list in zip(texts, image_lists)]
batch_size = len(batch_embs)
max_len = max([emb.shape[1] for emb in batch_embs])
emb_dim = batch_embs[0].shape[2]
dtype = batch_embs[0].dtype
device = batch_embs[0].device
embs = torch.zeros([batch_size, max_len, emb_dim], dtype=dtype, device=device)
attn_mask = torch.zeros([batch_size, max_len], dtype=torch.int, device=device)
for i, emb in enumerate(batch_embs):
emb_len = emb.shape[1]
embs[i, -emb_len:] = emb[0]
attn_mask[i, -emb_len:] = 1
# check if the input embedding tokens are in the range of the model cotext window (4096) and if it is not, then truncate it to the max context window
if self.model_type == "Llama":
context_window = 3700
else:
context_window = 7500
if embs.shape[1] > context_window:
embs = embs[:, -context_window:]
attn_mask = attn_mask[:, -context_window:]
with self.maybe_autocast():
if return_video_temporal_features:
last_hidden_state = self.llama_model(
inputs_embeds=embs,
attention_mask=attn_mask,
output_hidden_states=True,
).hidden_states[-1]
video_temporal_features = last_hidden_state.mean(dim=1)
# normalize the temporal features using L2 norm
# video_temporal_features = video_temporal_features / video_temporal_features.norm(dim=-1, keepdim=True)
outputs = self.llama_model.generate(
inputs_embeds=embs,
attention_mask=attn_mask,
max_new_tokens=max_new_tokens,
num_beams=num_beams,
do_sample=do_sample,
temperature=temperature,
repetition_penalty=repetition_penalty,
# stopping_criteria=stopping_criteria,
# use_fastv=False,
use_cache=True,
)
answers = []
for output_token in outputs:
if output_token[0] == 0:
output_token = output_token[1:]
output_texts = self.llama_tokenizer.decode(output_token, skip_special_tokens=True)
output_texts = output_texts.split('')[0] # remove the stop sign
output_texts = output_texts.replace("", "")
output_texts = output_texts.split(r'[/INST]')[-1].strip()
answers.append(output_texts)
if return_video_temporal_features:
return answers, video_temporal_features
else:
return answers
def inference_fun (self,video_path,instruction,gen_subtitles=True):
if gen_subtitles:
subtitle_path=generate_subtitles(video_path)
else :
subtitle_path=None
prepared_images,prepared_instruction=self.prepare_input(video_path,subtitle_path,instruction)
if prepared_images is None:
return "Video cann't be open ,check the video path again"
length=len(prepared_images)
prepared_images=prepared_images.unsqueeze(0)
conv = self.CONV_VISION.copy()
conv.system = ""
# if you want to make conversation comment the 2 lines above and make the conv is global variable
conv.append_message(conv.roles[0], prepared_instruction)
conv.append_message(conv.roles[1], None)
prompt = [conv.get_prompt()]
answers = self.generate(prepared_images, prompt, max_new_tokens=512, do_sample=True, lengths=[length],num_beams=1)
return answers[0]
@torch.no_grad()
def generate_text_only(
self,
images,
seg_tokens,
use_nucleus_sampling=False,
num_beams=1,
max_new_tokens=20,
min_length=1,
top_p=0.9,
repetition_penalty=1.5,
length_penalty=1,
temperature=1,
do_sample=False,
stop_words_ids=[2],
lengths=None,
return_video_temporal_features=False,
img_embeds=None,
):
'''
function for generate test use
'''
stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(
stops=[torch.tensor([i]).to(self.device) for i in stop_words_ids])])
batch_embs = [torch.cat([self.embed_tokens(seg_t)]) for seg_t in seg_tokens]
batch_size = len(batch_embs)
max_len = max([emb.shape[1] for emb in batch_embs])
emb_dim = batch_embs[0].shape[2]
dtype = batch_embs[0].dtype
device = batch_embs[0].device
embs = torch.zeros([batch_size, max_len, emb_dim], dtype=dtype, device=device)
attn_mask = torch.zeros([batch_size, max_len], dtype=torch.int, device=device)
for i, emb in enumerate(batch_embs):
emb_len = emb.shape[1]
embs[i, -emb_len:] = emb[0]
attn_mask[i, -emb_len:] = 1
with self.maybe_autocast():
outputs = self.llama_model.generate(
inputs_embeds=embs,
attention_mask=attn_mask,
max_new_tokens=max_new_tokens,
num_beams=num_beams,
do_sample=do_sample,
temperature=temperature,
repetition_penalty=repetition_penalty,
# stopping_criteria=stopping_criteria,
)
answers = []
for output_token in outputs:
if output_token[0] == 0:
output_token = output_token[1:]
output_texts = self.llama_tokenizer.decode(output_token, skip_special_tokens=True)
output_texts = output_texts.split('')[0] # remove the stop sign
output_texts = output_texts.replace("", "")
output_texts = output_texts.split(r'[/INST]')[-1].strip()
answers.append(output_texts)
return answers
@torch.no_grad()
def multi_select(self, images, texts, answers, num_cand=None):
all_losses = []
for answer in answers:
choice_samples = {
'image': images,
'instruction_input': texts,
'answer': answer
}
loss = self.forward(choice_samples, reduction='none')['loss'].reshape(-1, 1)
all_losses.append(loss)
torch.cuda.empty_cache()
all_losses = torch.cat(all_losses, dim=-1)
if num_cand is not None:
for i in range(all_losses.shape[0]):
all_losses[i, num_cand[i]:] = 9999
output_class_ranks = torch.argsort(all_losses, dim=-1)
return output_class_ranks.tolist()
def predict_answers(
self,
samples,
num_beams=5,
inference_method="generate",
max_len=10,
min_len=1,
num_ans_candidates=128,
answer_list=None,
prompt="",
length_penalty=0,
**kwargs
):
'''
function for open-ended VQA
'''
images = samples["image"].cuda()
texts = samples["instruction_input"]
output_text = self.generate(
images=images,
texts=texts,
num_beams=num_beams,
max_new_tokens=max_len,
min_length=min_len,
length_penalty=length_penalty
)
if "apply_lemmatizer" in samples.keys() and samples["apply_lemmatizer"]:
output_text = self._lemmatize(output_text)
return output_text
def predict_class(
self,
samples,
num_beams=5,
inference_method="generate",
max_len=10,
min_len=1,
num_ans_candidates=5,
answer_list=None,
prompt="",
length_penalty=0,
**kwargs
):
'''
function for multi-choice VQA
'''
image = samples["image"].cuda()
instruction = samples['instruction_input']
answers = samples["choices"]
num_cand = samples["num_choices"]
ranks = self.multi_select(image, instruction, answers, num_cand)
pred_ans = []
for i, rank in enumerate(ranks):
pred = answers[rank[0]][i]
pred_ans.append(pred)
return pred_ans
def embed_tokens(self, token_ids):
try:
embeds = self.llama_model.base_model.model.model.embed_tokens(token_ids)
except AttributeError:
embeds = self.llama_model.model.embed_tokens(token_ids)
return embeds
@classmethod
def from_config(cls, cfg):
model = cls(
cfg=cfg,
)
ckpt_path = cfg.get("ckpt", "") # load weights of MiniGPT-4
if ckpt_path:
print("Load Minigpt-4-LLM Checkpoint: {}".format(ckpt_path))
ckpt = torch.load(ckpt_path, map_location="cpu")
msg = model.load_state_dict(ckpt['model'], strict=False)
# push the model to the hub with its metadata and config file
model.to('cuda')
# model.push_to_hub("Vision-CAIR/MiniGPT4-video-mistral-hf")
video_config = minigpt4_video_config(cfg)
# video_config.save_pretrained("minigpt4_video_config")
# print("Save Minigpt-4-LLM Config: minigpt4_video_config")
# video_config.push_to_hub("Vision-CAIR/MiniGPT4-video-mistral-hf")
return model
def assign_imgs(batched_instruct_list, batched_img_embeds):
'''this function is used when the data is interleaved.
the interlevaed data is separated, and this function assign
corresponding image embeddings to each segment'''
if len(batched_img_embeds.shape) == 3:
batched_img_embeds = batched_img_embeds[:, None]
batched_assigned = []
for instruct_list, img_embeds in zip(batched_instruct_list, batched_img_embeds):
img_idx = 0
assigned_img = []
n_assigned = []
for instruct in instruct_list:
n_img = instruct.count('')
if n_img > 0: # this instruction include images.
assigned_img.append(img_embeds[None, img_idx:img_idx+n_img])
img_idx += n_img
n_assigned.append(n_img)
else: # this instruction doesn't include images
assigned_img.append(None)
n_assigned.append(None)
batched_assigned.append(assigned_img)
return batched_assigned