File size: 10,007 Bytes
7b062dd 2afb876 7b062dd 16aca1d 7b062dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
import jax
print(jax.local_device_count())
import jax.numpy as jnp
import flax
import flax.linen as nn
from flax.training.common_utils import get_metrics,onehot,shard,shard_prng_key
from flax.training import train_state
from flax.metrics.tensorboard import SummaryWriter
from flax.training import checkpoints
from datasets import load_dataset,load_metric
from transformers import GPT2Tokenizer
from tqdm import tqdm
import logging
import optax
import math
from pathlib import Path
from typing import Callable
from itertools import chain
from flax.metrics import tensorboard
from datasets import load_dataset,load_metric
from transformers import GPTNeoConfig,GPT2Tokenizer
from model_file import FlaxGPTNeoForMultipleChoice
logger = logging.getLogger()
logger.setLevel(logging.INFO)
tokenizer=GPT2Tokenizer.from_pretrained('EleutherAI/gpt-neo-1.3B',pad_token='<|endoftext|>')
dataset=load_dataset('piqa')
num_choices=2
def preprocess(example):
example['first_sentence']=[example['goal']]*num_choices
example['second_sentence']=[example[f'sol{i}'] for i in [1,2]]
return example
train_dataset=dataset['train'].map(preprocess)
validation_dataset=dataset['validation'].map(preprocess)
test_dataset=dataset['test'].map(preprocess)
len_train_dataset=16113
len_validation_dataset=1838
len_test_dataset=3084
train_dataset=train_dataset.select(range(len_train_dataset))
test_dataset=test_dataset.select(range(len_test_dataset))
validation_dataset=validation_dataset.select(range(len_validation_dataset))
remove_col=train_dataset.column_names
def tokenize(examples):
tokenized_examples=tokenizer(examples['first_sentence'],examples['second_sentence'],padding='max_length',truncation=True,max_length=512,return_tensors='jax')
tokenized_examples['labels']=int(examples['label'])
return tokenized_examples
train_dataset=train_dataset.map(tokenize)
validation_dataset=validation_dataset.map(tokenize)
train_dataset=train_dataset.remove_columns(remove_col)
validation_dataset=validation_dataset.remove_columns(remove_col)
test_dataset=test_dataset.remove_columns(remove_col)
per_device_batch_size=2
seed=0
num_train_epochs=3
learning_rate=2e-5
model = FlaxGPTNeoForMultipleChoice.from_pretrained('EleutherAI/gpt-neo-1.3B',input_shape=(1,num_choices,1))
total_batch_size = per_device_batch_size * jax.local_device_count()
print('The overall batch size (both for training and eval) is', total_batch_size)
num_train_steps = len(train_dataset) // total_batch_size * num_train_epochs
num_validation_steps=len(validation_dataset)//total_batch_size*num_train_epochs
learning_rate_function = optax.linear_schedule(init_value=learning_rate, end_value=3e-7, transition_steps=num_train_steps)
class TrainState(train_state.TrainState):
logits_function:Callable=flax.struct.field(pytree_node=False)
loss_function:Callable=flax.struct.field(pytree_node=False)
def adamw(weight_decay):
return optax.adafactor(learning_rate=learning_rate_function)
decay_path=lambda p:not any(x in p for x in ['bias','LayerNorm.weight'])
def traverse(function):
def mask(data):
flat=flax.traverse_util.flatten_dict(data)
return flax.traverse_util.unflatten_dict({k:function(k,v) for k,v in flat.items()})
return mask
gradient_transformation=optax.chain(
optax.masked(adamw(0.0),mask=traverse(lambda path,_:decay_path(path))),
optax.masked(adamw(0.01),mask=traverse(lambda path,_:not decay_path(path))))
def loss_function(logits,labels):
logits=flax.linen.log_softmax(logits)
xentropy=optax.softmax_cross_entropy(logits,onehot(labels,num_classes=num_choices))
return jnp.mean(xentropy)
def eval_function(logits):
return logits.argmax(-1)
state=TrainState.create(apply_fn=model.__call__,
params=model.params,
tx=gradient_transformation,
logits_function=eval_function,
loss_function=loss_function)
def train_step(state,batch,dropout_rng):
targets=batch.pop("labels")
dropout_rng,new_dropout_rng=jax.random.split(dropout_rng)
def loss_function(params):
logits=state.apply_fn(**batch,params=params,dropout_rng=dropout_rng,train=True)[0]
loss=state.loss_function(logits,targets)
return loss
grad_function=jax.value_and_grad(loss_function)
loss,grad=grad_function(state.params)
grad=jax.lax.pmean(grad,"batch")
new_state=state.apply_gradients(grads=grad)
#Added.
logits=new_state.apply_fn(**batch,params=new_state.params,dropout_rng=dropout_rng,train=True)[0]
accuracy=jnp.equal(jnp.argmax(logits,axis=-1),targets)
#metrics=jax.lax.pmean({"loss":loss,"learning_rate":learning_rate_function(state.step),'accuracy':accuracy},axis_name="batch")
metrics=jax.lax.pmean({"loss":jax.device_get(loss),"learning_rate":jax.device_get(learning_rate_function(state.step)),'accuracy':jax.device_get(accuracy)},axis_name="batch")
return new_state,metrics,new_dropout_rng
parallel_train_step = jax.pmap(train_step, axis_name="batch", donate_argnums=(0,))
def eval_step(state, batch):
targets=batch.pop('labels')
logits = state.apply_fn(**batch, params=state.params, train=False)
loss=state.loss_function(logits,targets)
predictions=state.logits_function(logits)
eval_accuracy=jnp.equal(predictions,targets)
#eval_acc=jnp.equal(predictions,targets)
#metrics=jax.lax.pmean({"loss":loss,'accuracy':eval_accuracy},axis_name="batch")
metrics=jax.lax.pmean({"loss":jax.device_get(loss),'accuracy':jax.device_get(eval_accuracy)},axis_name="batch")
#return state.logits_function(logits) #(8,4)
return targets,predictions,metrics
parallel_eval_step = jax.pmap(eval_step, axis_name="batch")
def glue_train_data_loader(rng,dataset,batch_size):
steps_per_epoch=len_train_dataset//batch_size
perms=jax.random.permutation(rng,len_train_dataset)
perms=perms[:steps_per_epoch*batch_size]
perms=perms.reshape((steps_per_epoch,batch_size))
for perm in perms:
batch=dataset[perm]
#print(jnp.array(batch['label']))
batch={k:jnp.array(v) for k,v in batch.items()}
batch=shard(batch)
yield batch
rng=jax.random.PRNGKey(seed)
dropout_rngs=jax.random.split(rng,jax.local_device_count())
def glue_eval_data_loader(dataset, batch_size):
for i in range(len_validation_dataset // batch_size):
batch = dataset[i * batch_size : (i + 1) * batch_size]
batch = {k: jnp.array(v) for k, v in batch.items()}
batch = shard(batch)
yield batch
state = flax.jax_utils.replicate(state)
actual_task = "mnli"
metric = load_metric('glue', "mnli")
actual_taskmetric = load_metric('glue', actual_task)
workdir='../results_tensorboard'
summary_writer = tensorboard.SummaryWriter(workdir)
logger.info(f"***** Running training *****")
logger.info(f" Num examples = {len_train_dataset}")
logger.info(f" Num Epochs = {num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {per_device_batch_size}")
logger.info(f" Total train batch size = {total_batch_size}")
logger.info(f" Total optimization steps = {num_train_steps}")
for i, epoch in enumerate(tqdm(range(1, num_train_epochs+1), desc=f"Epoch ...", position=0, leave=True)):
rng, input_rng = jax.random.split(rng)
train_acc_metrics=[]
train_loss_metrics=[]
eval_acc_metrics=[]
eval_loss_metrics=[]
# train
with tqdm(total=len_train_dataset // total_batch_size, desc="Training...", leave=False) as progress_bar_train:
for idx,batch in enumerate(glue_train_data_loader(input_rng, train_dataset, total_batch_size)):
state, train_metric, dropout_rngs = parallel_train_step(state, batch, dropout_rngs)
train_acc_metrics.append(jax.device_get(train_metric['accuracy']).mean().item())
train_loss_metrics.append(flax.jax_utils.unreplicate(train_metric)['loss'].item())
if idx%5==0:
summary_writer.scalar('train_loss',flax.jax_utils.unreplicate(train_metric)['loss'].item(),idx)
summary_writer.scalar('train_accuracy', jax.device_get(train_metric['accuracy']).mean().item(),idx)
if idx%20==0:
logger.info(f"train_step_loss{idx}: {flax.jax_utils.unreplicate(train_metric)['loss'].item()} train_step_acc{idx}: {jax.device_get(train_metric['accuracy']).mean().item()} ")
progress_bar_train.update(1)
# evaluate
with tqdm(total=len_validation_dataset // total_batch_size, desc="Evaluating...", leave=False) as progress_bar_eval:
for idx,batch in enumerate(glue_eval_data_loader(validation_dataset, total_batch_size)):
labels,predictions,eval_metric=parallel_eval_step(state, batch)
eval_acc_metrics.append(jax.device_get(eval_metric['accuracy']).mean().item())
eval_loss_metrics.append(flax.jax_utils.unreplicate(eval_metric)['loss'].item())
progress_bar_eval.update(1)
if idx%5==0:
logger.info(f"eval_step_loss {idx} : {flax.jax_utils.unreplicate(eval_metric)['loss'].item()} eval_step_acc {idx} : {jax.device_get(eval_metric['accuracy']).mean().item()}")
summary_writer.scalar('eval_loss : ', flax.jax_utils.unreplicate(eval_metric)['loss'].item(),idx)
summary_writer.scalar('eval_accuracy : ', jax.device_get(eval_metric['accuracy']).mean().item(),idx)
logger.info(f"---------------------Epoch {epoch} done-----------------")
logger.info(f"Train loss: {jax.device_get(jnp.array(train_loss_metrics)).mean().item()} Train accuracy: {jax.device_get(jnp.array(train_acc_metrics)).mean().item()}")
logger.info(f"Eval loss: {jax.device_get(jnp.array(eval_loss_metrics)).mean().item()} Eval accuracy: {jax.device_get(jnp.array(eval_acc_metrics)).mean().item()}")
if jax.process_index() == 0:
params = jax.device_get(jax.tree_map(lambda x: x[0], state.params))
model.save_pretrained(
'../',
params=params,
push_to_hub=True,
commit_message=f"Piqa:Saving weights of epoch {epoch} at step {idx}",)
summary_writer.flush()
|