File size: 10,007 Bytes
7b062dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2afb876
 
 
7b062dd
 
 
 
 
 
 
 
16aca1d
7b062dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
import jax
print(jax.local_device_count())
import jax.numpy as jnp

import flax
import flax.linen as nn
from flax.training.common_utils import get_metrics,onehot,shard,shard_prng_key
from flax.training import train_state
from flax.metrics.tensorboard import SummaryWriter
from flax.training import checkpoints

from datasets import load_dataset,load_metric
from transformers import GPT2Tokenizer

from tqdm import tqdm

import logging
import optax
import math
from pathlib import Path
from typing import Callable
from itertools import chain
from flax.metrics import tensorboard
from datasets import load_dataset,load_metric

from transformers import  GPTNeoConfig,GPT2Tokenizer

from  model_file  import FlaxGPTNeoForMultipleChoice

logger = logging.getLogger()
logger.setLevel(logging.INFO)


tokenizer=GPT2Tokenizer.from_pretrained('EleutherAI/gpt-neo-1.3B',pad_token='<|endoftext|>')

dataset=load_dataset('piqa')
num_choices=2

def preprocess(example):
    example['first_sentence']=[example['goal']]*num_choices
    example['second_sentence']=[example[f'sol{i}'] for i in [1,2]]
    return example

train_dataset=dataset['train'].map(preprocess)
validation_dataset=dataset['validation'].map(preprocess)
test_dataset=dataset['test'].map(preprocess)

len_train_dataset=16113
len_validation_dataset=1838
len_test_dataset=3084

train_dataset=train_dataset.select(range(len_train_dataset))
test_dataset=test_dataset.select(range(len_test_dataset))
validation_dataset=validation_dataset.select(range(len_validation_dataset))

remove_col=train_dataset.column_names

def tokenize(examples):
    tokenized_examples=tokenizer(examples['first_sentence'],examples['second_sentence'],padding='max_length',truncation=True,max_length=512,return_tensors='jax')
    tokenized_examples['labels']=int(examples['label'])
    return tokenized_examples

train_dataset=train_dataset.map(tokenize)
validation_dataset=validation_dataset.map(tokenize)

train_dataset=train_dataset.remove_columns(remove_col)
validation_dataset=validation_dataset.remove_columns(remove_col)
test_dataset=test_dataset.remove_columns(remove_col)

per_device_batch_size=2
seed=0
num_train_epochs=3
learning_rate=2e-5

model = FlaxGPTNeoForMultipleChoice.from_pretrained('EleutherAI/gpt-neo-1.3B',input_shape=(1,num_choices,1))

total_batch_size = per_device_batch_size * jax.local_device_count()
print('The overall batch size (both for training and eval) is', total_batch_size)
num_train_steps = len(train_dataset) // total_batch_size * num_train_epochs
num_validation_steps=len(validation_dataset)//total_batch_size*num_train_epochs

learning_rate_function = optax.linear_schedule(init_value=learning_rate, end_value=3e-7, transition_steps=num_train_steps)

class TrainState(train_state.TrainState):
  logits_function:Callable=flax.struct.field(pytree_node=False)
  loss_function:Callable=flax.struct.field(pytree_node=False)

def adamw(weight_decay):
    return optax.adafactor(learning_rate=learning_rate_function)

decay_path=lambda p:not any(x in p for x in ['bias','LayerNorm.weight'])

def traverse(function):
  def mask(data):
    flat=flax.traverse_util.flatten_dict(data)
    return flax.traverse_util.unflatten_dict({k:function(k,v) for k,v in flat.items()})
  return mask
gradient_transformation=optax.chain(
  optax.masked(adamw(0.0),mask=traverse(lambda path,_:decay_path(path))),
  optax.masked(adamw(0.01),mask=traverse(lambda path,_:not decay_path(path))))

def loss_function(logits,labels):
  logits=flax.linen.log_softmax(logits)
  xentropy=optax.softmax_cross_entropy(logits,onehot(labels,num_classes=num_choices))
  return jnp.mean(xentropy)

def eval_function(logits):
  return logits.argmax(-1)

state=TrainState.create(apply_fn=model.__call__,
                          params=model.params,
                          tx=gradient_transformation,
                          logits_function=eval_function,
                          loss_function=loss_function)

def train_step(state,batch,dropout_rng):
  targets=batch.pop("labels")
  dropout_rng,new_dropout_rng=jax.random.split(dropout_rng)
  def loss_function(params):
    logits=state.apply_fn(**batch,params=params,dropout_rng=dropout_rng,train=True)[0]
    loss=state.loss_function(logits,targets)
    return loss
  grad_function=jax.value_and_grad(loss_function)
  loss,grad=grad_function(state.params)
  grad=jax.lax.pmean(grad,"batch")
  new_state=state.apply_gradients(grads=grad)
        #Added.
  logits=new_state.apply_fn(**batch,params=new_state.params,dropout_rng=dropout_rng,train=True)[0]
  accuracy=jnp.equal(jnp.argmax(logits,axis=-1),targets)
  #metrics=jax.lax.pmean({"loss":loss,"learning_rate":learning_rate_function(state.step),'accuracy':accuracy},axis_name="batch")
  metrics=jax.lax.pmean({"loss":jax.device_get(loss),"learning_rate":jax.device_get(learning_rate_function(state.step)),'accuracy':jax.device_get(accuracy)},axis_name="batch")
  return new_state,metrics,new_dropout_rng

parallel_train_step = jax.pmap(train_step, axis_name="batch", donate_argnums=(0,))

def eval_step(state, batch):
  targets=batch.pop('labels')
  logits = state.apply_fn(**batch, params=state.params, train=False)
  loss=state.loss_function(logits,targets)
  predictions=state.logits_function(logits)
  eval_accuracy=jnp.equal(predictions,targets)
  #eval_acc=jnp.equal(predictions,targets)
  #metrics=jax.lax.pmean({"loss":loss,'accuracy':eval_accuracy},axis_name="batch")
  metrics=jax.lax.pmean({"loss":jax.device_get(loss),'accuracy':jax.device_get(eval_accuracy)},axis_name="batch")
  #return state.logits_function(logits)  #(8,4)
  return targets,predictions,metrics

parallel_eval_step = jax.pmap(eval_step, axis_name="batch")

def glue_train_data_loader(rng,dataset,batch_size):
  steps_per_epoch=len_train_dataset//batch_size
  perms=jax.random.permutation(rng,len_train_dataset)
  perms=perms[:steps_per_epoch*batch_size]
  perms=perms.reshape((steps_per_epoch,batch_size))
  for perm in perms:
    batch=dataset[perm]
    #print(jnp.array(batch['label']))
    batch={k:jnp.array(v) for k,v in batch.items()}
    batch=shard(batch)
    yield batch

rng=jax.random.PRNGKey(seed)
dropout_rngs=jax.random.split(rng,jax.local_device_count())

def glue_eval_data_loader(dataset, batch_size):
  for i in range(len_validation_dataset // batch_size):
    batch = dataset[i * batch_size : (i + 1) * batch_size]
    batch = {k: jnp.array(v) for k, v in batch.items()}
    batch = shard(batch)
    yield batch

state = flax.jax_utils.replicate(state)

actual_task = "mnli"
metric = load_metric('glue', "mnli")
actual_taskmetric = load_metric('glue', actual_task)

workdir='../results_tensorboard'
summary_writer = tensorboard.SummaryWriter(workdir)

logger.info(f"***** Running training *****")
logger.info(f"  Num examples = {len_train_dataset}")
logger.info(f"  Num Epochs = {num_train_epochs}")
logger.info(f"  Instantaneous batch size per device = {per_device_batch_size}")
logger.info(f"  Total train batch size  = {total_batch_size}")
logger.info(f"  Total optimization steps = {num_train_steps}")

for i, epoch in enumerate(tqdm(range(1, num_train_epochs+1), desc=f"Epoch ...", position=0, leave=True)):
    rng, input_rng = jax.random.split(rng)
    train_acc_metrics=[]
    train_loss_metrics=[]
    eval_acc_metrics=[]
    eval_loss_metrics=[]
    # train
    with tqdm(total=len_train_dataset // total_batch_size, desc="Training...", leave=False) as progress_bar_train:
      for idx,batch in enumerate(glue_train_data_loader(input_rng, train_dataset, total_batch_size)):
        state, train_metric, dropout_rngs = parallel_train_step(state, batch, dropout_rngs)
        train_acc_metrics.append(jax.device_get(train_metric['accuracy']).mean().item())
        train_loss_metrics.append(flax.jax_utils.unreplicate(train_metric)['loss'].item())
        if idx%5==0:
          summary_writer.scalar('train_loss',flax.jax_utils.unreplicate(train_metric)['loss'].item(),idx)
          summary_writer.scalar('train_accuracy', jax.device_get(train_metric['accuracy']).mean().item(),idx)
        if idx%20==0:
            logger.info(f"train_step_loss{idx}:   {flax.jax_utils.unreplicate(train_metric)['loss'].item()} train_step_acc{idx}:   {jax.device_get(train_metric['accuracy']).mean().item()}  ")
            
        progress_bar_train.update(1)

    # evaluate
    with tqdm(total=len_validation_dataset // total_batch_size, desc="Evaluating...", leave=False) as progress_bar_eval:
      for idx,batch in enumerate(glue_eval_data_loader(validation_dataset, total_batch_size)):
          labels,predictions,eval_metric=parallel_eval_step(state, batch)
          eval_acc_metrics.append(jax.device_get(eval_metric['accuracy']).mean().item())
          eval_loss_metrics.append(flax.jax_utils.unreplicate(eval_metric)['loss'].item())
          progress_bar_eval.update(1)
          if idx%5==0:
            logger.info(f"eval_step_loss  {idx} :   {flax.jax_utils.unreplicate(eval_metric)['loss'].item()} eval_step_acc  {idx}  :   {jax.device_get(eval_metric['accuracy']).mean().item()}")
            summary_writer.scalar('eval_loss : ', flax.jax_utils.unreplicate(eval_metric)['loss'].item(),idx)
            summary_writer.scalar('eval_accuracy : ', jax.device_get(eval_metric['accuracy']).mean().item(),idx)

    logger.info(f"---------------------Epoch {epoch} done-----------------")
    logger.info(f"Train loss:   {jax.device_get(jnp.array(train_loss_metrics)).mean().item()} Train accuracy:  {jax.device_get(jnp.array(train_acc_metrics)).mean().item()}")
    logger.info(f"Eval loss:    {jax.device_get(jnp.array(eval_loss_metrics)).mean().item()} Eval accuracy:    {jax.device_get(jnp.array(eval_acc_metrics)).mean().item()}")

if jax.process_index() == 0:
        params = jax.device_get(jax.tree_map(lambda x: x[0], state.params))
    
        model.save_pretrained(
            '../',
            params=params,
            push_to_hub=True,
            commit_message=f"Piqa:Saving weights of epoch {epoch} at step {idx}",)

summary_writer.flush()