Upload folder using huggingface_hub
Browse files- README.md +10 -0
- adapter_config.json +26 -0
- adapter_model.bin +3 -0
- adapter_model.safetensors +3 -0
- config.json +43 -0
- global_step525/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- global_step525/mp_rank_00_model_states.pt +3 -0
- latest +1 -0
- non_lora_trainables.bin +3 -0
- rng_state.pth +3 -0
- scheduler.pt +3 -0
- special_tokens_map.json +24 -0
- tokenizer.model +3 -0
- tokenizer_config.json +45 -0
- trainer_state.json +3696 -0
- training_args.bin +3 -0
- zero_to_fp32.py +592 -0
README.md
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
---
|
4 |
+
## Training procedure
|
5 |
+
|
6 |
+
### Framework versions
|
7 |
+
|
8 |
+
- PEFT 0.4.0
|
9 |
+
|
10 |
+
- PEFT 0.4.0
|
adapter_config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"auto_mapping": null,
|
3 |
+
"base_model_name_or_path": "/model_zoo/Vivid-7B-base",
|
4 |
+
"bias": "none",
|
5 |
+
"fan_in_fan_out": false,
|
6 |
+
"inference_mode": true,
|
7 |
+
"init_lora_weights": true,
|
8 |
+
"layers_pattern": null,
|
9 |
+
"layers_to_transform": null,
|
10 |
+
"lora_alpha": 64,
|
11 |
+
"lora_dropout": 0.05,
|
12 |
+
"modules_to_save": null,
|
13 |
+
"peft_type": "LORA",
|
14 |
+
"r": 32,
|
15 |
+
"revision": null,
|
16 |
+
"target_modules": [
|
17 |
+
"v_proj",
|
18 |
+
"k_proj",
|
19 |
+
"down_proj",
|
20 |
+
"gate_proj",
|
21 |
+
"q_proj",
|
22 |
+
"up_proj",
|
23 |
+
"o_proj"
|
24 |
+
],
|
25 |
+
"task_type": "CAUSAL_LM"
|
26 |
+
}
|
adapter_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cf246c435bb0761c494e9584c22a75d4f6f39822bf1de50757ea16deecd32a0b
|
3 |
+
size 167927754
|
adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:460329d78814996d0825afd1e6be5faa13feb1966e1b749d471469532246268d
|
3 |
+
size 167832688
|
config.json
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/model_zoo/Vivid-7B-base",
|
3 |
+
"architectures": [
|
4 |
+
"MistralForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bert_type": "qformer_layer:12",
|
8 |
+
"bos_token_id": 1,
|
9 |
+
"compress_type": "mean",
|
10 |
+
"eos_token_id": 2,
|
11 |
+
"freeze_mm_mlp_adapter": false,
|
12 |
+
"hidden_act": "silu",
|
13 |
+
"hidden_size": 4096,
|
14 |
+
"image_aspect_ratio": "pad",
|
15 |
+
"image_grid_pinpoints": null,
|
16 |
+
"image_processor": "./llamavid/processor/intern-vit",
|
17 |
+
"initializer_range": 0.02,
|
18 |
+
"intermediate_size": 14336,
|
19 |
+
"max_position_embeddings": 32768,
|
20 |
+
"max_token": 4096,
|
21 |
+
"mm_hidden_size": 1024,
|
22 |
+
"mm_projector_type": "mlp2x_gelu",
|
23 |
+
"mm_use_im_patch_token": false,
|
24 |
+
"mm_use_im_start_end": false,
|
25 |
+
"mm_vision_select_feature": "patch",
|
26 |
+
"mm_vision_select_layer": -1,
|
27 |
+
"mm_vision_tower": "/model_zoo/intern-vit",
|
28 |
+
"model_type": "mistral",
|
29 |
+
"num_attention_heads": 32,
|
30 |
+
"num_hidden_layers": 32,
|
31 |
+
"num_key_value_heads": 8,
|
32 |
+
"num_query": 32,
|
33 |
+
"rms_norm_eps": 1e-05,
|
34 |
+
"rope_theta": 10000.0,
|
35 |
+
"sliding_window": 4096,
|
36 |
+
"tie_word_embeddings": false,
|
37 |
+
"torch_dtype": "bfloat16",
|
38 |
+
"transformers_version": "4.38.2",
|
39 |
+
"tune_mm_mlp_adapter": false,
|
40 |
+
"use_cache": false,
|
41 |
+
"use_mm_proj": true,
|
42 |
+
"vocab_size": 48384
|
43 |
+
}
|
global_step525/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:30ad26a2b4aeadcd8f57d8eb5f3a21c4f9b791fe59ed5cba807543b60444df8c
|
3 |
+
size 7471050560
|
global_step525/mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4742a87baf94651655803534b535661ac260b2b4f1b8e1868633ee07a9c41394
|
3 |
+
size 1245738500
|
latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step525
|
non_lora_trainables.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3ebdec47215a9bf60f43652cbfb5c4d3dc784812049117f1cb636133c313dfe4
|
3 |
+
size 1077631656
|
rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ab079d3977b35da0c70c2f86c7b434635b4e725a1b585958f017e16d6008b9c8
|
3 |
+
size 14244
|
scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3eb458428fb4d710cc6c3e0aba863084014be047e8d6d62df77ae7d341858cd2
|
3 |
+
size 1064
|
special_tokens_map.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": "<unk>",
|
17 |
+
"unk_token": {
|
18 |
+
"content": "<unk>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
}
|
24 |
+
}
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4d88bdadaa2a065aa7c6e18a4b5999ce4c76cec14d9fea882102e7b4931d7ef0
|
3 |
+
size 779539
|
tokenizer_config.json
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"add_prefix_space": true,
|
5 |
+
"added_tokens_decoder": {
|
6 |
+
"0": {
|
7 |
+
"content": "<unk>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false,
|
12 |
+
"special": true
|
13 |
+
},
|
14 |
+
"1": {
|
15 |
+
"content": "<s>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": false,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false,
|
20 |
+
"special": true
|
21 |
+
},
|
22 |
+
"2": {
|
23 |
+
"content": "</s>",
|
24 |
+
"lstrip": false,
|
25 |
+
"normalized": false,
|
26 |
+
"rstrip": false,
|
27 |
+
"single_word": false,
|
28 |
+
"special": true
|
29 |
+
}
|
30 |
+
},
|
31 |
+
"additional_special_tokens": [],
|
32 |
+
"bos_token": "<s>",
|
33 |
+
"chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{{ bos_token }}{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '</s>'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
|
34 |
+
"clean_up_tokenization_spaces": false,
|
35 |
+
"eos_token": "</s>",
|
36 |
+
"legacy": true,
|
37 |
+
"model_max_length": 4096,
|
38 |
+
"pad_token": "<unk>",
|
39 |
+
"padding_side": "right",
|
40 |
+
"sp_model_kwargs": {},
|
41 |
+
"spaces_between_special_tokens": false,
|
42 |
+
"tokenizer_class": "LlamaTokenizer",
|
43 |
+
"unk_token": "<unk>",
|
44 |
+
"use_default_system_prompt": false
|
45 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,3696 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 0.3879728419010669,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 525,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.0,
|
13 |
+
"grad_norm": 1.9372913499539586,
|
14 |
+
"learning_rate": 2.4390243902439027e-06,
|
15 |
+
"loss": 1.6191,
|
16 |
+
"step": 1
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.0,
|
20 |
+
"grad_norm": 1.8879048490473127,
|
21 |
+
"learning_rate": 4.8780487804878055e-06,
|
22 |
+
"loss": 1.6982,
|
23 |
+
"step": 2
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.0,
|
27 |
+
"grad_norm": 1.857307355920545,
|
28 |
+
"learning_rate": 7.317073170731707e-06,
|
29 |
+
"loss": 1.6724,
|
30 |
+
"step": 3
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.0,
|
34 |
+
"grad_norm": 1.808250401091683,
|
35 |
+
"learning_rate": 9.756097560975611e-06,
|
36 |
+
"loss": 1.647,
|
37 |
+
"step": 4
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.0,
|
41 |
+
"grad_norm": 2.5133500505596453,
|
42 |
+
"learning_rate": 1.2195121951219513e-05,
|
43 |
+
"loss": 1.6079,
|
44 |
+
"step": 5
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.0,
|
48 |
+
"grad_norm": 1.2734146289947597,
|
49 |
+
"learning_rate": 1.4634146341463415e-05,
|
50 |
+
"loss": 1.5908,
|
51 |
+
"step": 6
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.01,
|
55 |
+
"grad_norm": 1.1812917040861377,
|
56 |
+
"learning_rate": 1.707317073170732e-05,
|
57 |
+
"loss": 1.5518,
|
58 |
+
"step": 7
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.01,
|
62 |
+
"grad_norm": 1.293637431287248,
|
63 |
+
"learning_rate": 1.9512195121951222e-05,
|
64 |
+
"loss": 1.5952,
|
65 |
+
"step": 8
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.01,
|
69 |
+
"grad_norm": 1.1620676440097686,
|
70 |
+
"learning_rate": 2.1951219512195124e-05,
|
71 |
+
"loss": 1.5493,
|
72 |
+
"step": 9
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 0.01,
|
76 |
+
"grad_norm": 1.3191260666446372,
|
77 |
+
"learning_rate": 2.4390243902439026e-05,
|
78 |
+
"loss": 1.5625,
|
79 |
+
"step": 10
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 0.01,
|
83 |
+
"grad_norm": 1.182981202097366,
|
84 |
+
"learning_rate": 2.682926829268293e-05,
|
85 |
+
"loss": 1.5498,
|
86 |
+
"step": 11
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.01,
|
90 |
+
"grad_norm": 1.0724491677903074,
|
91 |
+
"learning_rate": 2.926829268292683e-05,
|
92 |
+
"loss": 1.5547,
|
93 |
+
"step": 12
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.01,
|
97 |
+
"grad_norm": 0.9434780094091623,
|
98 |
+
"learning_rate": 3.170731707317073e-05,
|
99 |
+
"loss": 1.5327,
|
100 |
+
"step": 13
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.01,
|
104 |
+
"grad_norm": 1.0202543546064133,
|
105 |
+
"learning_rate": 3.414634146341464e-05,
|
106 |
+
"loss": 1.5933,
|
107 |
+
"step": 14
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 0.01,
|
111 |
+
"grad_norm": 0.996865818341891,
|
112 |
+
"learning_rate": 3.6585365853658535e-05,
|
113 |
+
"loss": 1.5796,
|
114 |
+
"step": 15
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.01,
|
118 |
+
"grad_norm": 0.9288105887086908,
|
119 |
+
"learning_rate": 3.9024390243902444e-05,
|
120 |
+
"loss": 1.4609,
|
121 |
+
"step": 16
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 0.01,
|
125 |
+
"grad_norm": 0.9726608694986103,
|
126 |
+
"learning_rate": 4.146341463414634e-05,
|
127 |
+
"loss": 1.5161,
|
128 |
+
"step": 17
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.01,
|
132 |
+
"grad_norm": 0.8619245275928736,
|
133 |
+
"learning_rate": 4.390243902439025e-05,
|
134 |
+
"loss": 1.5122,
|
135 |
+
"step": 18
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.01,
|
139 |
+
"grad_norm": 0.9215398746800475,
|
140 |
+
"learning_rate": 4.634146341463415e-05,
|
141 |
+
"loss": 1.5078,
|
142 |
+
"step": 19
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 0.01,
|
146 |
+
"grad_norm": 0.903097203515963,
|
147 |
+
"learning_rate": 4.878048780487805e-05,
|
148 |
+
"loss": 1.4502,
|
149 |
+
"step": 20
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 0.02,
|
153 |
+
"grad_norm": 0.8761498232482394,
|
154 |
+
"learning_rate": 5.121951219512195e-05,
|
155 |
+
"loss": 1.4893,
|
156 |
+
"step": 21
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"epoch": 0.02,
|
160 |
+
"grad_norm": 0.8353385747464918,
|
161 |
+
"learning_rate": 5.365853658536586e-05,
|
162 |
+
"loss": 1.4717,
|
163 |
+
"step": 22
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"epoch": 0.02,
|
167 |
+
"grad_norm": 0.8000291372477917,
|
168 |
+
"learning_rate": 5.6097560975609764e-05,
|
169 |
+
"loss": 1.481,
|
170 |
+
"step": 23
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.02,
|
174 |
+
"grad_norm": 0.8452088500727898,
|
175 |
+
"learning_rate": 5.853658536585366e-05,
|
176 |
+
"loss": 1.4644,
|
177 |
+
"step": 24
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.02,
|
181 |
+
"grad_norm": 0.8829309199222577,
|
182 |
+
"learning_rate": 6.097560975609756e-05,
|
183 |
+
"loss": 1.4868,
|
184 |
+
"step": 25
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"epoch": 0.02,
|
188 |
+
"grad_norm": 0.8162327363449975,
|
189 |
+
"learning_rate": 6.341463414634146e-05,
|
190 |
+
"loss": 1.4883,
|
191 |
+
"step": 26
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 0.02,
|
195 |
+
"grad_norm": 0.7987925882960866,
|
196 |
+
"learning_rate": 6.585365853658538e-05,
|
197 |
+
"loss": 1.4268,
|
198 |
+
"step": 27
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"epoch": 0.02,
|
202 |
+
"grad_norm": 0.7909140922467949,
|
203 |
+
"learning_rate": 6.829268292682928e-05,
|
204 |
+
"loss": 1.4873,
|
205 |
+
"step": 28
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"epoch": 0.02,
|
209 |
+
"grad_norm": 0.7560592825415925,
|
210 |
+
"learning_rate": 7.073170731707317e-05,
|
211 |
+
"loss": 1.4116,
|
212 |
+
"step": 29
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.02,
|
216 |
+
"grad_norm": 0.7058796878894483,
|
217 |
+
"learning_rate": 7.317073170731707e-05,
|
218 |
+
"loss": 1.4023,
|
219 |
+
"step": 30
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.02,
|
223 |
+
"grad_norm": 0.7614550996113684,
|
224 |
+
"learning_rate": 7.560975609756099e-05,
|
225 |
+
"loss": 1.4312,
|
226 |
+
"step": 31
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 0.02,
|
230 |
+
"grad_norm": 0.7531993296256376,
|
231 |
+
"learning_rate": 7.804878048780489e-05,
|
232 |
+
"loss": 1.5024,
|
233 |
+
"step": 32
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 0.02,
|
237 |
+
"grad_norm": 0.7475795582718757,
|
238 |
+
"learning_rate": 8.048780487804879e-05,
|
239 |
+
"loss": 1.4363,
|
240 |
+
"step": 33
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"epoch": 0.03,
|
244 |
+
"grad_norm": 0.7561530704205457,
|
245 |
+
"learning_rate": 8.292682926829268e-05,
|
246 |
+
"loss": 1.4873,
|
247 |
+
"step": 34
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"epoch": 0.03,
|
251 |
+
"grad_norm": 0.7606234092420118,
|
252 |
+
"learning_rate": 8.53658536585366e-05,
|
253 |
+
"loss": 1.4204,
|
254 |
+
"step": 35
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 0.03,
|
258 |
+
"grad_norm": 0.7078849092381325,
|
259 |
+
"learning_rate": 8.78048780487805e-05,
|
260 |
+
"loss": 1.418,
|
261 |
+
"step": 36
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.03,
|
265 |
+
"grad_norm": 0.7583459620401868,
|
266 |
+
"learning_rate": 9.02439024390244e-05,
|
267 |
+
"loss": 1.4365,
|
268 |
+
"step": 37
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"epoch": 0.03,
|
272 |
+
"grad_norm": 0.6479336734201823,
|
273 |
+
"learning_rate": 9.26829268292683e-05,
|
274 |
+
"loss": 1.3911,
|
275 |
+
"step": 38
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 0.03,
|
279 |
+
"grad_norm": 0.7138445522030739,
|
280 |
+
"learning_rate": 9.51219512195122e-05,
|
281 |
+
"loss": 1.4287,
|
282 |
+
"step": 39
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"epoch": 0.03,
|
286 |
+
"grad_norm": 0.6772243082870256,
|
287 |
+
"learning_rate": 9.75609756097561e-05,
|
288 |
+
"loss": 1.3779,
|
289 |
+
"step": 40
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"epoch": 0.03,
|
293 |
+
"grad_norm": 0.7001769060106223,
|
294 |
+
"learning_rate": 0.0001,
|
295 |
+
"loss": 1.3623,
|
296 |
+
"step": 41
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 0.03,
|
300 |
+
"grad_norm": 0.6593306891481673,
|
301 |
+
"learning_rate": 9.999985665852258e-05,
|
302 |
+
"loss": 1.3745,
|
303 |
+
"step": 42
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.03,
|
307 |
+
"grad_norm": 0.7111159325021309,
|
308 |
+
"learning_rate": 9.999942663491213e-05,
|
309 |
+
"loss": 1.3799,
|
310 |
+
"step": 43
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"epoch": 0.03,
|
314 |
+
"grad_norm": 0.7023696510759943,
|
315 |
+
"learning_rate": 9.999870993163431e-05,
|
316 |
+
"loss": 1.4399,
|
317 |
+
"step": 44
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 0.03,
|
321 |
+
"grad_norm": 0.6736689337950041,
|
322 |
+
"learning_rate": 9.999770655279843e-05,
|
323 |
+
"loss": 1.4106,
|
324 |
+
"step": 45
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 0.03,
|
328 |
+
"grad_norm": 0.6746379997849087,
|
329 |
+
"learning_rate": 9.999641650415752e-05,
|
330 |
+
"loss": 1.4409,
|
331 |
+
"step": 46
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 0.03,
|
335 |
+
"grad_norm": 0.6615592598917496,
|
336 |
+
"learning_rate": 9.99948397931083e-05,
|
337 |
+
"loss": 1.3984,
|
338 |
+
"step": 47
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 0.04,
|
342 |
+
"grad_norm": 0.6538222984665192,
|
343 |
+
"learning_rate": 9.999297642869105e-05,
|
344 |
+
"loss": 1.4031,
|
345 |
+
"step": 48
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 0.04,
|
349 |
+
"grad_norm": 0.6129031974400467,
|
350 |
+
"learning_rate": 9.999082642158973e-05,
|
351 |
+
"loss": 1.396,
|
352 |
+
"step": 49
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"epoch": 0.04,
|
356 |
+
"grad_norm": 0.6148818612628825,
|
357 |
+
"learning_rate": 9.998838978413168e-05,
|
358 |
+
"loss": 1.3574,
|
359 |
+
"step": 50
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 0.04,
|
363 |
+
"grad_norm": 0.6869612852614861,
|
364 |
+
"learning_rate": 9.99856665302878e-05,
|
365 |
+
"loss": 1.3762,
|
366 |
+
"step": 51
|
367 |
+
},
|
368 |
+
{
|
369 |
+
"epoch": 0.04,
|
370 |
+
"grad_norm": 0.7410178778694718,
|
371 |
+
"learning_rate": 9.998265667567226e-05,
|
372 |
+
"loss": 1.3481,
|
373 |
+
"step": 52
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"epoch": 0.04,
|
377 |
+
"grad_norm": 0.6380516168920353,
|
378 |
+
"learning_rate": 9.997936023754257e-05,
|
379 |
+
"loss": 1.3513,
|
380 |
+
"step": 53
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"epoch": 0.04,
|
384 |
+
"grad_norm": 0.6192351492724488,
|
385 |
+
"learning_rate": 9.997577723479938e-05,
|
386 |
+
"loss": 1.3662,
|
387 |
+
"step": 54
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 0.04,
|
391 |
+
"grad_norm": 0.633774941417789,
|
392 |
+
"learning_rate": 9.997190768798639e-05,
|
393 |
+
"loss": 1.3457,
|
394 |
+
"step": 55
|
395 |
+
},
|
396 |
+
{
|
397 |
+
"epoch": 0.04,
|
398 |
+
"grad_norm": 0.6016840416873676,
|
399 |
+
"learning_rate": 9.996775161929027e-05,
|
400 |
+
"loss": 1.3877,
|
401 |
+
"step": 56
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"epoch": 0.04,
|
405 |
+
"grad_norm": 0.638026596140304,
|
406 |
+
"learning_rate": 9.99633090525405e-05,
|
407 |
+
"loss": 1.3892,
|
408 |
+
"step": 57
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"epoch": 0.04,
|
412 |
+
"grad_norm": 0.5934027179170136,
|
413 |
+
"learning_rate": 9.995858001320926e-05,
|
414 |
+
"loss": 1.3223,
|
415 |
+
"step": 58
|
416 |
+
},
|
417 |
+
{
|
418 |
+
"epoch": 0.04,
|
419 |
+
"grad_norm": 0.6143195436309025,
|
420 |
+
"learning_rate": 9.995356452841122e-05,
|
421 |
+
"loss": 1.3862,
|
422 |
+
"step": 59
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 0.04,
|
426 |
+
"grad_norm": 0.6076935190423259,
|
427 |
+
"learning_rate": 9.994826262690347e-05,
|
428 |
+
"loss": 1.3584,
|
429 |
+
"step": 60
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 0.05,
|
433 |
+
"grad_norm": 0.6239965555110781,
|
434 |
+
"learning_rate": 9.994267433908533e-05,
|
435 |
+
"loss": 1.2771,
|
436 |
+
"step": 61
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 0.05,
|
440 |
+
"grad_norm": 0.5469871219286494,
|
441 |
+
"learning_rate": 9.99367996969981e-05,
|
442 |
+
"loss": 1.3579,
|
443 |
+
"step": 62
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"epoch": 0.05,
|
447 |
+
"grad_norm": 0.5975500231663011,
|
448 |
+
"learning_rate": 9.9930638734325e-05,
|
449 |
+
"loss": 1.3872,
|
450 |
+
"step": 63
|
451 |
+
},
|
452 |
+
{
|
453 |
+
"epoch": 0.05,
|
454 |
+
"grad_norm": 0.6160102854784424,
|
455 |
+
"learning_rate": 9.992419148639087e-05,
|
456 |
+
"loss": 1.3831,
|
457 |
+
"step": 64
|
458 |
+
},
|
459 |
+
{
|
460 |
+
"epoch": 0.05,
|
461 |
+
"grad_norm": 0.5815474376554662,
|
462 |
+
"learning_rate": 9.991745799016206e-05,
|
463 |
+
"loss": 1.3745,
|
464 |
+
"step": 65
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 0.05,
|
468 |
+
"grad_norm": 0.5994591436721235,
|
469 |
+
"learning_rate": 9.991043828424612e-05,
|
470 |
+
"loss": 1.396,
|
471 |
+
"step": 66
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 0.05,
|
475 |
+
"grad_norm": 0.5896523240727669,
|
476 |
+
"learning_rate": 9.990313240889167e-05,
|
477 |
+
"loss": 1.3608,
|
478 |
+
"step": 67
|
479 |
+
},
|
480 |
+
{
|
481 |
+
"epoch": 0.05,
|
482 |
+
"grad_norm": 0.6062100949214702,
|
483 |
+
"learning_rate": 9.989554040598807e-05,
|
484 |
+
"loss": 1.2996,
|
485 |
+
"step": 68
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"epoch": 0.05,
|
489 |
+
"grad_norm": 0.5941049216825265,
|
490 |
+
"learning_rate": 9.988766231906533e-05,
|
491 |
+
"loss": 1.4106,
|
492 |
+
"step": 69
|
493 |
+
},
|
494 |
+
{
|
495 |
+
"epoch": 0.05,
|
496 |
+
"grad_norm": 0.5604128113953568,
|
497 |
+
"learning_rate": 9.987949819329365e-05,
|
498 |
+
"loss": 1.3931,
|
499 |
+
"step": 70
|
500 |
+
},
|
501 |
+
{
|
502 |
+
"epoch": 0.05,
|
503 |
+
"grad_norm": 0.5519277490096212,
|
504 |
+
"learning_rate": 9.98710480754834e-05,
|
505 |
+
"loss": 1.3691,
|
506 |
+
"step": 71
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 0.05,
|
510 |
+
"grad_norm": 0.5900021330626725,
|
511 |
+
"learning_rate": 9.986231201408467e-05,
|
512 |
+
"loss": 1.4058,
|
513 |
+
"step": 72
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 0.05,
|
517 |
+
"grad_norm": 0.5699754681306506,
|
518 |
+
"learning_rate": 9.985329005918702e-05,
|
519 |
+
"loss": 1.355,
|
520 |
+
"step": 73
|
521 |
+
},
|
522 |
+
{
|
523 |
+
"epoch": 0.05,
|
524 |
+
"grad_norm": 0.593149750992695,
|
525 |
+
"learning_rate": 9.98439822625193e-05,
|
526 |
+
"loss": 1.3545,
|
527 |
+
"step": 74
|
528 |
+
},
|
529 |
+
{
|
530 |
+
"epoch": 0.06,
|
531 |
+
"grad_norm": 0.5824626045065218,
|
532 |
+
"learning_rate": 9.983438867744923e-05,
|
533 |
+
"loss": 1.3896,
|
534 |
+
"step": 75
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 0.06,
|
538 |
+
"grad_norm": 0.5900786393120402,
|
539 |
+
"learning_rate": 9.982450935898316e-05,
|
540 |
+
"loss": 1.3716,
|
541 |
+
"step": 76
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 0.06,
|
545 |
+
"grad_norm": 0.5688141367114475,
|
546 |
+
"learning_rate": 9.981434436376572e-05,
|
547 |
+
"loss": 1.3921,
|
548 |
+
"step": 77
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 0.06,
|
552 |
+
"grad_norm": 0.557565379686218,
|
553 |
+
"learning_rate": 9.980389375007955e-05,
|
554 |
+
"loss": 1.3506,
|
555 |
+
"step": 78
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 0.06,
|
559 |
+
"grad_norm": 0.5740715320740841,
|
560 |
+
"learning_rate": 9.979315757784488e-05,
|
561 |
+
"loss": 1.2917,
|
562 |
+
"step": 79
|
563 |
+
},
|
564 |
+
{
|
565 |
+
"epoch": 0.06,
|
566 |
+
"grad_norm": 0.5717745274109229,
|
567 |
+
"learning_rate": 9.97821359086193e-05,
|
568 |
+
"loss": 1.3154,
|
569 |
+
"step": 80
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"epoch": 0.06,
|
573 |
+
"grad_norm": 0.609615875256831,
|
574 |
+
"learning_rate": 9.977082880559725e-05,
|
575 |
+
"loss": 1.3328,
|
576 |
+
"step": 81
|
577 |
+
},
|
578 |
+
{
|
579 |
+
"epoch": 0.06,
|
580 |
+
"grad_norm": 0.5777864702702744,
|
581 |
+
"learning_rate": 9.975923633360985e-05,
|
582 |
+
"loss": 1.3599,
|
583 |
+
"step": 82
|
584 |
+
},
|
585 |
+
{
|
586 |
+
"epoch": 0.06,
|
587 |
+
"grad_norm": 0.575948499045498,
|
588 |
+
"learning_rate": 9.974735855912436e-05,
|
589 |
+
"loss": 1.4038,
|
590 |
+
"step": 83
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 0.06,
|
594 |
+
"grad_norm": 0.550693122074238,
|
595 |
+
"learning_rate": 9.97351955502439e-05,
|
596 |
+
"loss": 1.3203,
|
597 |
+
"step": 84
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 0.06,
|
601 |
+
"grad_norm": 0.5561601283605949,
|
602 |
+
"learning_rate": 9.972274737670701e-05,
|
603 |
+
"loss": 1.3477,
|
604 |
+
"step": 85
|
605 |
+
},
|
606 |
+
{
|
607 |
+
"epoch": 0.06,
|
608 |
+
"grad_norm": 0.5601251180421914,
|
609 |
+
"learning_rate": 9.971001410988728e-05,
|
610 |
+
"loss": 1.333,
|
611 |
+
"step": 86
|
612 |
+
},
|
613 |
+
{
|
614 |
+
"epoch": 0.06,
|
615 |
+
"grad_norm": 0.6207004745075507,
|
616 |
+
"learning_rate": 9.969699582279292e-05,
|
617 |
+
"loss": 1.4048,
|
618 |
+
"step": 87
|
619 |
+
},
|
620 |
+
{
|
621 |
+
"epoch": 0.07,
|
622 |
+
"grad_norm": 0.5475040554880181,
|
623 |
+
"learning_rate": 9.968369259006634e-05,
|
624 |
+
"loss": 1.3208,
|
625 |
+
"step": 88
|
626 |
+
},
|
627 |
+
{
|
628 |
+
"epoch": 0.07,
|
629 |
+
"grad_norm": 0.6054670378552847,
|
630 |
+
"learning_rate": 9.967010448798375e-05,
|
631 |
+
"loss": 1.4131,
|
632 |
+
"step": 89
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 0.07,
|
636 |
+
"grad_norm": 0.5486336748948858,
|
637 |
+
"learning_rate": 9.965623159445471e-05,
|
638 |
+
"loss": 1.3843,
|
639 |
+
"step": 90
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 0.07,
|
643 |
+
"grad_norm": 0.585603864758025,
|
644 |
+
"learning_rate": 9.964207398902163e-05,
|
645 |
+
"loss": 1.3186,
|
646 |
+
"step": 91
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 0.07,
|
650 |
+
"grad_norm": 0.5412960874208915,
|
651 |
+
"learning_rate": 9.96276317528594e-05,
|
652 |
+
"loss": 1.2861,
|
653 |
+
"step": 92
|
654 |
+
},
|
655 |
+
{
|
656 |
+
"epoch": 0.07,
|
657 |
+
"grad_norm": 0.5442105369162202,
|
658 |
+
"learning_rate": 9.96129049687749e-05,
|
659 |
+
"loss": 1.3262,
|
660 |
+
"step": 93
|
661 |
+
},
|
662 |
+
{
|
663 |
+
"epoch": 0.07,
|
664 |
+
"grad_norm": 0.5816978676309428,
|
665 |
+
"learning_rate": 9.959789372120649e-05,
|
666 |
+
"loss": 1.3279,
|
667 |
+
"step": 94
|
668 |
+
},
|
669 |
+
{
|
670 |
+
"epoch": 0.07,
|
671 |
+
"grad_norm": 0.5557519862862452,
|
672 |
+
"learning_rate": 9.958259809622352e-05,
|
673 |
+
"loss": 1.3672,
|
674 |
+
"step": 95
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 0.07,
|
678 |
+
"grad_norm": 0.5666965195077155,
|
679 |
+
"learning_rate": 9.956701818152591e-05,
|
680 |
+
"loss": 1.3203,
|
681 |
+
"step": 96
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"epoch": 0.07,
|
685 |
+
"grad_norm": 0.5354511291609182,
|
686 |
+
"learning_rate": 9.955115406644356e-05,
|
687 |
+
"loss": 1.3081,
|
688 |
+
"step": 97
|
689 |
+
},
|
690 |
+
{
|
691 |
+
"epoch": 0.07,
|
692 |
+
"grad_norm": 0.5685729288533676,
|
693 |
+
"learning_rate": 9.953500584193592e-05,
|
694 |
+
"loss": 1.3452,
|
695 |
+
"step": 98
|
696 |
+
},
|
697 |
+
{
|
698 |
+
"epoch": 0.07,
|
699 |
+
"grad_norm": 0.5922446508548838,
|
700 |
+
"learning_rate": 9.95185736005914e-05,
|
701 |
+
"loss": 1.3682,
|
702 |
+
"step": 99
|
703 |
+
},
|
704 |
+
{
|
705 |
+
"epoch": 0.07,
|
706 |
+
"grad_norm": 0.5837642463681222,
|
707 |
+
"learning_rate": 9.950185743662685e-05,
|
708 |
+
"loss": 1.3691,
|
709 |
+
"step": 100
|
710 |
+
},
|
711 |
+
{
|
712 |
+
"epoch": 0.07,
|
713 |
+
"grad_norm": 0.5761448966076219,
|
714 |
+
"learning_rate": 9.948485744588709e-05,
|
715 |
+
"loss": 1.3281,
|
716 |
+
"step": 101
|
717 |
+
},
|
718 |
+
{
|
719 |
+
"epoch": 0.08,
|
720 |
+
"grad_norm": 0.553490008569796,
|
721 |
+
"learning_rate": 9.946757372584423e-05,
|
722 |
+
"loss": 1.292,
|
723 |
+
"step": 102
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"epoch": 0.08,
|
727 |
+
"grad_norm": 0.5686477341821499,
|
728 |
+
"learning_rate": 9.945000637559727e-05,
|
729 |
+
"loss": 1.3486,
|
730 |
+
"step": 103
|
731 |
+
},
|
732 |
+
{
|
733 |
+
"epoch": 0.08,
|
734 |
+
"grad_norm": 0.5772487636958804,
|
735 |
+
"learning_rate": 9.943215549587138e-05,
|
736 |
+
"loss": 1.3425,
|
737 |
+
"step": 104
|
738 |
+
},
|
739 |
+
{
|
740 |
+
"epoch": 0.08,
|
741 |
+
"grad_norm": 0.5758207849461601,
|
742 |
+
"learning_rate": 9.941402118901744e-05,
|
743 |
+
"loss": 1.3701,
|
744 |
+
"step": 105
|
745 |
+
},
|
746 |
+
{
|
747 |
+
"epoch": 0.08,
|
748 |
+
"grad_norm": 0.5582099537521159,
|
749 |
+
"learning_rate": 9.939560355901136e-05,
|
750 |
+
"loss": 1.3794,
|
751 |
+
"step": 106
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"epoch": 0.08,
|
755 |
+
"grad_norm": 0.5336197399728324,
|
756 |
+
"learning_rate": 9.937690271145354e-05,
|
757 |
+
"loss": 1.3179,
|
758 |
+
"step": 107
|
759 |
+
},
|
760 |
+
{
|
761 |
+
"epoch": 0.08,
|
762 |
+
"grad_norm": 0.539037656457371,
|
763 |
+
"learning_rate": 9.935791875356832e-05,
|
764 |
+
"loss": 1.3071,
|
765 |
+
"step": 108
|
766 |
+
},
|
767 |
+
{
|
768 |
+
"epoch": 0.08,
|
769 |
+
"grad_norm": 0.5584770963502244,
|
770 |
+
"learning_rate": 9.933865179420321e-05,
|
771 |
+
"loss": 1.3945,
|
772 |
+
"step": 109
|
773 |
+
},
|
774 |
+
{
|
775 |
+
"epoch": 0.08,
|
776 |
+
"grad_norm": 0.5364047388288558,
|
777 |
+
"learning_rate": 9.931910194382837e-05,
|
778 |
+
"loss": 1.3462,
|
779 |
+
"step": 110
|
780 |
+
},
|
781 |
+
{
|
782 |
+
"epoch": 0.08,
|
783 |
+
"grad_norm": 0.5956933567804931,
|
784 |
+
"learning_rate": 9.929926931453599e-05,
|
785 |
+
"loss": 1.2585,
|
786 |
+
"step": 111
|
787 |
+
},
|
788 |
+
{
|
789 |
+
"epoch": 0.08,
|
790 |
+
"grad_norm": 0.5548298244830802,
|
791 |
+
"learning_rate": 9.927915402003964e-05,
|
792 |
+
"loss": 1.3765,
|
793 |
+
"step": 112
|
794 |
+
},
|
795 |
+
{
|
796 |
+
"epoch": 0.08,
|
797 |
+
"grad_norm": 0.5528131728204222,
|
798 |
+
"learning_rate": 9.92587561756735e-05,
|
799 |
+
"loss": 1.3452,
|
800 |
+
"step": 113
|
801 |
+
},
|
802 |
+
{
|
803 |
+
"epoch": 0.08,
|
804 |
+
"grad_norm": 0.5181397205586854,
|
805 |
+
"learning_rate": 9.92380758983919e-05,
|
806 |
+
"loss": 1.2671,
|
807 |
+
"step": 114
|
808 |
+
},
|
809 |
+
{
|
810 |
+
"epoch": 0.08,
|
811 |
+
"grad_norm": 0.5429954425262675,
|
812 |
+
"learning_rate": 9.921711330676848e-05,
|
813 |
+
"loss": 1.3574,
|
814 |
+
"step": 115
|
815 |
+
},
|
816 |
+
{
|
817 |
+
"epoch": 0.09,
|
818 |
+
"grad_norm": 0.5523231773869766,
|
819 |
+
"learning_rate": 9.919586852099562e-05,
|
820 |
+
"loss": 1.3184,
|
821 |
+
"step": 116
|
822 |
+
},
|
823 |
+
{
|
824 |
+
"epoch": 0.09,
|
825 |
+
"grad_norm": 0.5583959107787768,
|
826 |
+
"learning_rate": 9.917434166288364e-05,
|
827 |
+
"loss": 1.3442,
|
828 |
+
"step": 117
|
829 |
+
},
|
830 |
+
{
|
831 |
+
"epoch": 0.09,
|
832 |
+
"grad_norm": 0.5850081526075311,
|
833 |
+
"learning_rate": 9.915253285586024e-05,
|
834 |
+
"loss": 1.3477,
|
835 |
+
"step": 118
|
836 |
+
},
|
837 |
+
{
|
838 |
+
"epoch": 0.09,
|
839 |
+
"grad_norm": 0.5498743192645993,
|
840 |
+
"learning_rate": 9.913044222496966e-05,
|
841 |
+
"loss": 1.3398,
|
842 |
+
"step": 119
|
843 |
+
},
|
844 |
+
{
|
845 |
+
"epoch": 0.09,
|
846 |
+
"grad_norm": 0.5853233345937257,
|
847 |
+
"learning_rate": 9.910806989687206e-05,
|
848 |
+
"loss": 1.3276,
|
849 |
+
"step": 120
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 0.09,
|
853 |
+
"grad_norm": 0.559389561256856,
|
854 |
+
"learning_rate": 9.908541599984276e-05,
|
855 |
+
"loss": 1.3462,
|
856 |
+
"step": 121
|
857 |
+
},
|
858 |
+
{
|
859 |
+
"epoch": 0.09,
|
860 |
+
"grad_norm": 0.5298088621667728,
|
861 |
+
"learning_rate": 9.906248066377143e-05,
|
862 |
+
"loss": 1.2568,
|
863 |
+
"step": 122
|
864 |
+
},
|
865 |
+
{
|
866 |
+
"epoch": 0.09,
|
867 |
+
"grad_norm": 0.5731884986496186,
|
868 |
+
"learning_rate": 9.903926402016153e-05,
|
869 |
+
"loss": 1.3394,
|
870 |
+
"step": 123
|
871 |
+
},
|
872 |
+
{
|
873 |
+
"epoch": 0.09,
|
874 |
+
"grad_norm": 0.5549155957971303,
|
875 |
+
"learning_rate": 9.901576620212933e-05,
|
876 |
+
"loss": 1.311,
|
877 |
+
"step": 124
|
878 |
+
},
|
879 |
+
{
|
880 |
+
"epoch": 0.09,
|
881 |
+
"grad_norm": 0.5620092141236146,
|
882 |
+
"learning_rate": 9.899198734440335e-05,
|
883 |
+
"loss": 1.291,
|
884 |
+
"step": 125
|
885 |
+
},
|
886 |
+
{
|
887 |
+
"epoch": 0.09,
|
888 |
+
"grad_norm": 0.5405164924320079,
|
889 |
+
"learning_rate": 9.896792758332341e-05,
|
890 |
+
"loss": 1.248,
|
891 |
+
"step": 126
|
892 |
+
},
|
893 |
+
{
|
894 |
+
"epoch": 0.09,
|
895 |
+
"grad_norm": 0.5602202105737174,
|
896 |
+
"learning_rate": 9.894358705684002e-05,
|
897 |
+
"loss": 1.3115,
|
898 |
+
"step": 127
|
899 |
+
},
|
900 |
+
{
|
901 |
+
"epoch": 0.09,
|
902 |
+
"grad_norm": 0.5580296998093701,
|
903 |
+
"learning_rate": 9.891896590451344e-05,
|
904 |
+
"loss": 1.2947,
|
905 |
+
"step": 128
|
906 |
+
},
|
907 |
+
{
|
908 |
+
"epoch": 0.1,
|
909 |
+
"grad_norm": 0.5755635897570144,
|
910 |
+
"learning_rate": 9.889406426751296e-05,
|
911 |
+
"loss": 1.3086,
|
912 |
+
"step": 129
|
913 |
+
},
|
914 |
+
{
|
915 |
+
"epoch": 0.1,
|
916 |
+
"grad_norm": 0.6025851962917577,
|
917 |
+
"learning_rate": 9.886888228861608e-05,
|
918 |
+
"loss": 1.3447,
|
919 |
+
"step": 130
|
920 |
+
},
|
921 |
+
{
|
922 |
+
"epoch": 0.1,
|
923 |
+
"grad_norm": 0.5660419268974345,
|
924 |
+
"learning_rate": 9.88434201122077e-05,
|
925 |
+
"loss": 1.3232,
|
926 |
+
"step": 131
|
927 |
+
},
|
928 |
+
{
|
929 |
+
"epoch": 0.1,
|
930 |
+
"grad_norm": 0.5495648120402916,
|
931 |
+
"learning_rate": 9.881767788427925e-05,
|
932 |
+
"loss": 1.3096,
|
933 |
+
"step": 132
|
934 |
+
},
|
935 |
+
{
|
936 |
+
"epoch": 0.1,
|
937 |
+
"grad_norm": 0.5577872798163368,
|
938 |
+
"learning_rate": 9.879165575242787e-05,
|
939 |
+
"loss": 1.291,
|
940 |
+
"step": 133
|
941 |
+
},
|
942 |
+
{
|
943 |
+
"epoch": 0.1,
|
944 |
+
"grad_norm": 0.5540620803629338,
|
945 |
+
"learning_rate": 9.876535386585561e-05,
|
946 |
+
"loss": 1.335,
|
947 |
+
"step": 134
|
948 |
+
},
|
949 |
+
{
|
950 |
+
"epoch": 0.1,
|
951 |
+
"grad_norm": 0.5573425731012122,
|
952 |
+
"learning_rate": 9.873877237536853e-05,
|
953 |
+
"loss": 1.2327,
|
954 |
+
"step": 135
|
955 |
+
},
|
956 |
+
{
|
957 |
+
"epoch": 0.1,
|
958 |
+
"grad_norm": 0.5827857038389533,
|
959 |
+
"learning_rate": 9.871191143337582e-05,
|
960 |
+
"loss": 1.3333,
|
961 |
+
"step": 136
|
962 |
+
},
|
963 |
+
{
|
964 |
+
"epoch": 0.1,
|
965 |
+
"grad_norm": 0.5897883061496167,
|
966 |
+
"learning_rate": 9.868477119388896e-05,
|
967 |
+
"loss": 1.3076,
|
968 |
+
"step": 137
|
969 |
+
},
|
970 |
+
{
|
971 |
+
"epoch": 0.1,
|
972 |
+
"grad_norm": 0.5800275384221499,
|
973 |
+
"learning_rate": 9.865735181252085e-05,
|
974 |
+
"loss": 1.3188,
|
975 |
+
"step": 138
|
976 |
+
},
|
977 |
+
{
|
978 |
+
"epoch": 0.1,
|
979 |
+
"grad_norm": 0.5605765677262206,
|
980 |
+
"learning_rate": 9.862965344648485e-05,
|
981 |
+
"loss": 1.3086,
|
982 |
+
"step": 139
|
983 |
+
},
|
984 |
+
{
|
985 |
+
"epoch": 0.1,
|
986 |
+
"grad_norm": 0.5432447170586258,
|
987 |
+
"learning_rate": 9.860167625459398e-05,
|
988 |
+
"loss": 1.2861,
|
989 |
+
"step": 140
|
990 |
+
},
|
991 |
+
{
|
992 |
+
"epoch": 0.1,
|
993 |
+
"grad_norm": 0.5687257803544524,
|
994 |
+
"learning_rate": 9.85734203972599e-05,
|
995 |
+
"loss": 1.2839,
|
996 |
+
"step": 141
|
997 |
+
},
|
998 |
+
{
|
999 |
+
"epoch": 0.1,
|
1000 |
+
"grad_norm": 0.5475328993701518,
|
1001 |
+
"learning_rate": 9.854488603649206e-05,
|
1002 |
+
"loss": 1.3169,
|
1003 |
+
"step": 142
|
1004 |
+
},
|
1005 |
+
{
|
1006 |
+
"epoch": 0.11,
|
1007 |
+
"grad_norm": 0.5408143803639806,
|
1008 |
+
"learning_rate": 9.851607333589677e-05,
|
1009 |
+
"loss": 1.3374,
|
1010 |
+
"step": 143
|
1011 |
+
},
|
1012 |
+
{
|
1013 |
+
"epoch": 0.11,
|
1014 |
+
"grad_norm": 0.5350053494827027,
|
1015 |
+
"learning_rate": 9.848698246067623e-05,
|
1016 |
+
"loss": 1.2888,
|
1017 |
+
"step": 144
|
1018 |
+
},
|
1019 |
+
{
|
1020 |
+
"epoch": 0.11,
|
1021 |
+
"grad_norm": 0.5642075781884446,
|
1022 |
+
"learning_rate": 9.84576135776276e-05,
|
1023 |
+
"loss": 1.3105,
|
1024 |
+
"step": 145
|
1025 |
+
},
|
1026 |
+
{
|
1027 |
+
"epoch": 0.11,
|
1028 |
+
"grad_norm": 0.5725161088840623,
|
1029 |
+
"learning_rate": 9.842796685514203e-05,
|
1030 |
+
"loss": 1.3516,
|
1031 |
+
"step": 146
|
1032 |
+
},
|
1033 |
+
{
|
1034 |
+
"epoch": 0.11,
|
1035 |
+
"grad_norm": 0.5837888943455876,
|
1036 |
+
"learning_rate": 9.839804246320375e-05,
|
1037 |
+
"loss": 1.2871,
|
1038 |
+
"step": 147
|
1039 |
+
},
|
1040 |
+
{
|
1041 |
+
"epoch": 0.11,
|
1042 |
+
"grad_norm": 0.5833329842842448,
|
1043 |
+
"learning_rate": 9.836784057338899e-05,
|
1044 |
+
"loss": 1.3232,
|
1045 |
+
"step": 148
|
1046 |
+
},
|
1047 |
+
{
|
1048 |
+
"epoch": 0.11,
|
1049 |
+
"grad_norm": 0.5244172538585695,
|
1050 |
+
"learning_rate": 9.833736135886512e-05,
|
1051 |
+
"loss": 1.2568,
|
1052 |
+
"step": 149
|
1053 |
+
},
|
1054 |
+
{
|
1055 |
+
"epoch": 0.11,
|
1056 |
+
"grad_norm": 0.5163576076330887,
|
1057 |
+
"learning_rate": 9.830660499438955e-05,
|
1058 |
+
"loss": 1.2759,
|
1059 |
+
"step": 150
|
1060 |
+
},
|
1061 |
+
{
|
1062 |
+
"epoch": 0.11,
|
1063 |
+
"grad_norm": 0.5617840717093857,
|
1064 |
+
"learning_rate": 9.827557165630879e-05,
|
1065 |
+
"loss": 1.2524,
|
1066 |
+
"step": 151
|
1067 |
+
},
|
1068 |
+
{
|
1069 |
+
"epoch": 0.11,
|
1070 |
+
"grad_norm": 0.547220410155329,
|
1071 |
+
"learning_rate": 9.824426152255741e-05,
|
1072 |
+
"loss": 1.312,
|
1073 |
+
"step": 152
|
1074 |
+
},
|
1075 |
+
{
|
1076 |
+
"epoch": 0.11,
|
1077 |
+
"grad_norm": 0.5715922980351898,
|
1078 |
+
"learning_rate": 9.821267477265705e-05,
|
1079 |
+
"loss": 1.335,
|
1080 |
+
"step": 153
|
1081 |
+
},
|
1082 |
+
{
|
1083 |
+
"epoch": 0.11,
|
1084 |
+
"grad_norm": 0.5626236612178414,
|
1085 |
+
"learning_rate": 9.818081158771538e-05,
|
1086 |
+
"loss": 1.3633,
|
1087 |
+
"step": 154
|
1088 |
+
},
|
1089 |
+
{
|
1090 |
+
"epoch": 0.11,
|
1091 |
+
"grad_norm": 0.556817713740677,
|
1092 |
+
"learning_rate": 9.814867215042502e-05,
|
1093 |
+
"loss": 1.3345,
|
1094 |
+
"step": 155
|
1095 |
+
},
|
1096 |
+
{
|
1097 |
+
"epoch": 0.12,
|
1098 |
+
"grad_norm": 0.5658424328358594,
|
1099 |
+
"learning_rate": 9.811625664506259e-05,
|
1100 |
+
"loss": 1.3325,
|
1101 |
+
"step": 156
|
1102 |
+
},
|
1103 |
+
{
|
1104 |
+
"epoch": 0.12,
|
1105 |
+
"grad_norm": 0.5518987143292007,
|
1106 |
+
"learning_rate": 9.808356525748748e-05,
|
1107 |
+
"loss": 1.3179,
|
1108 |
+
"step": 157
|
1109 |
+
},
|
1110 |
+
{
|
1111 |
+
"epoch": 0.12,
|
1112 |
+
"grad_norm": 0.5509045139485853,
|
1113 |
+
"learning_rate": 9.805059817514101e-05,
|
1114 |
+
"loss": 1.3276,
|
1115 |
+
"step": 158
|
1116 |
+
},
|
1117 |
+
{
|
1118 |
+
"epoch": 0.12,
|
1119 |
+
"grad_norm": 0.5612999607711056,
|
1120 |
+
"learning_rate": 9.801735558704517e-05,
|
1121 |
+
"loss": 1.2192,
|
1122 |
+
"step": 159
|
1123 |
+
},
|
1124 |
+
{
|
1125 |
+
"epoch": 0.12,
|
1126 |
+
"grad_norm": 0.530326353544212,
|
1127 |
+
"learning_rate": 9.798383768380164e-05,
|
1128 |
+
"loss": 1.2988,
|
1129 |
+
"step": 160
|
1130 |
+
},
|
1131 |
+
{
|
1132 |
+
"epoch": 0.12,
|
1133 |
+
"grad_norm": 0.5524425336112486,
|
1134 |
+
"learning_rate": 9.795004465759065e-05,
|
1135 |
+
"loss": 1.2622,
|
1136 |
+
"step": 161
|
1137 |
+
},
|
1138 |
+
{
|
1139 |
+
"epoch": 0.12,
|
1140 |
+
"grad_norm": 0.5121240819278214,
|
1141 |
+
"learning_rate": 9.791597670216989e-05,
|
1142 |
+
"loss": 1.2603,
|
1143 |
+
"step": 162
|
1144 |
+
},
|
1145 |
+
{
|
1146 |
+
"epoch": 0.12,
|
1147 |
+
"grad_norm": 0.5262701595678754,
|
1148 |
+
"learning_rate": 9.78816340128734e-05,
|
1149 |
+
"loss": 1.22,
|
1150 |
+
"step": 163
|
1151 |
+
},
|
1152 |
+
{
|
1153 |
+
"epoch": 0.12,
|
1154 |
+
"grad_norm": 0.5866254674193113,
|
1155 |
+
"learning_rate": 9.784701678661045e-05,
|
1156 |
+
"loss": 1.311,
|
1157 |
+
"step": 164
|
1158 |
+
},
|
1159 |
+
{
|
1160 |
+
"epoch": 0.12,
|
1161 |
+
"grad_norm": 0.567120419528464,
|
1162 |
+
"learning_rate": 9.781212522186443e-05,
|
1163 |
+
"loss": 1.3145,
|
1164 |
+
"step": 165
|
1165 |
+
},
|
1166 |
+
{
|
1167 |
+
"epoch": 0.12,
|
1168 |
+
"grad_norm": 0.5704512174009239,
|
1169 |
+
"learning_rate": 9.777695951869164e-05,
|
1170 |
+
"loss": 1.2612,
|
1171 |
+
"step": 166
|
1172 |
+
},
|
1173 |
+
{
|
1174 |
+
"epoch": 0.12,
|
1175 |
+
"grad_norm": 0.5359884622353506,
|
1176 |
+
"learning_rate": 9.774151987872027e-05,
|
1177 |
+
"loss": 1.2117,
|
1178 |
+
"step": 167
|
1179 |
+
},
|
1180 |
+
{
|
1181 |
+
"epoch": 0.12,
|
1182 |
+
"grad_norm": 0.5772321074843504,
|
1183 |
+
"learning_rate": 9.770580650514914e-05,
|
1184 |
+
"loss": 1.3525,
|
1185 |
+
"step": 168
|
1186 |
+
},
|
1187 |
+
{
|
1188 |
+
"epoch": 0.12,
|
1189 |
+
"grad_norm": 0.5316876920831217,
|
1190 |
+
"learning_rate": 9.766981960274653e-05,
|
1191 |
+
"loss": 1.3442,
|
1192 |
+
"step": 169
|
1193 |
+
},
|
1194 |
+
{
|
1195 |
+
"epoch": 0.13,
|
1196 |
+
"grad_norm": 0.5622203218145027,
|
1197 |
+
"learning_rate": 9.763355937784909e-05,
|
1198 |
+
"loss": 1.2964,
|
1199 |
+
"step": 170
|
1200 |
+
},
|
1201 |
+
{
|
1202 |
+
"epoch": 0.13,
|
1203 |
+
"grad_norm": 0.5614932814360857,
|
1204 |
+
"learning_rate": 9.759702603836059e-05,
|
1205 |
+
"loss": 1.3389,
|
1206 |
+
"step": 171
|
1207 |
+
},
|
1208 |
+
{
|
1209 |
+
"epoch": 0.13,
|
1210 |
+
"grad_norm": 0.568962837143467,
|
1211 |
+
"learning_rate": 9.756021979375071e-05,
|
1212 |
+
"loss": 1.3174,
|
1213 |
+
"step": 172
|
1214 |
+
},
|
1215 |
+
{
|
1216 |
+
"epoch": 0.13,
|
1217 |
+
"grad_norm": 0.5382419139994956,
|
1218 |
+
"learning_rate": 9.752314085505395e-05,
|
1219 |
+
"loss": 1.3125,
|
1220 |
+
"step": 173
|
1221 |
+
},
|
1222 |
+
{
|
1223 |
+
"epoch": 0.13,
|
1224 |
+
"grad_norm": 0.5677837729549118,
|
1225 |
+
"learning_rate": 9.748578943486828e-05,
|
1226 |
+
"loss": 1.2871,
|
1227 |
+
"step": 174
|
1228 |
+
},
|
1229 |
+
{
|
1230 |
+
"epoch": 0.13,
|
1231 |
+
"grad_norm": 0.5602612877442024,
|
1232 |
+
"learning_rate": 9.744816574735405e-05,
|
1233 |
+
"loss": 1.3438,
|
1234 |
+
"step": 175
|
1235 |
+
},
|
1236 |
+
{
|
1237 |
+
"epoch": 0.13,
|
1238 |
+
"grad_norm": 0.5735194400650546,
|
1239 |
+
"learning_rate": 9.74102700082326e-05,
|
1240 |
+
"loss": 1.3208,
|
1241 |
+
"step": 176
|
1242 |
+
},
|
1243 |
+
{
|
1244 |
+
"epoch": 0.13,
|
1245 |
+
"grad_norm": 0.5670876099448275,
|
1246 |
+
"learning_rate": 9.737210243478521e-05,
|
1247 |
+
"loss": 1.2969,
|
1248 |
+
"step": 177
|
1249 |
+
},
|
1250 |
+
{
|
1251 |
+
"epoch": 0.13,
|
1252 |
+
"grad_norm": 0.5450536272385241,
|
1253 |
+
"learning_rate": 9.733366324585175e-05,
|
1254 |
+
"loss": 1.2673,
|
1255 |
+
"step": 178
|
1256 |
+
},
|
1257 |
+
{
|
1258 |
+
"epoch": 0.13,
|
1259 |
+
"grad_norm": 0.5340701964695135,
|
1260 |
+
"learning_rate": 9.72949526618294e-05,
|
1261 |
+
"loss": 1.3403,
|
1262 |
+
"step": 179
|
1263 |
+
},
|
1264 |
+
{
|
1265 |
+
"epoch": 0.13,
|
1266 |
+
"grad_norm": 0.5422933717116616,
|
1267 |
+
"learning_rate": 9.725597090467144e-05,
|
1268 |
+
"loss": 1.2539,
|
1269 |
+
"step": 180
|
1270 |
+
},
|
1271 |
+
{
|
1272 |
+
"epoch": 0.13,
|
1273 |
+
"grad_norm": 0.5680150103490264,
|
1274 |
+
"learning_rate": 9.721671819788602e-05,
|
1275 |
+
"loss": 1.3149,
|
1276 |
+
"step": 181
|
1277 |
+
},
|
1278 |
+
{
|
1279 |
+
"epoch": 0.13,
|
1280 |
+
"grad_norm": 0.560101859043945,
|
1281 |
+
"learning_rate": 9.717719476653475e-05,
|
1282 |
+
"loss": 1.321,
|
1283 |
+
"step": 182
|
1284 |
+
},
|
1285 |
+
{
|
1286 |
+
"epoch": 0.14,
|
1287 |
+
"grad_norm": 0.5267278121510764,
|
1288 |
+
"learning_rate": 9.71374008372315e-05,
|
1289 |
+
"loss": 1.2227,
|
1290 |
+
"step": 183
|
1291 |
+
},
|
1292 |
+
{
|
1293 |
+
"epoch": 0.14,
|
1294 |
+
"grad_norm": 0.5687530339596342,
|
1295 |
+
"learning_rate": 9.709733663814113e-05,
|
1296 |
+
"loss": 1.3159,
|
1297 |
+
"step": 184
|
1298 |
+
},
|
1299 |
+
{
|
1300 |
+
"epoch": 0.14,
|
1301 |
+
"grad_norm": 0.5321503974993333,
|
1302 |
+
"learning_rate": 9.705700239897809e-05,
|
1303 |
+
"loss": 1.3188,
|
1304 |
+
"step": 185
|
1305 |
+
},
|
1306 |
+
{
|
1307 |
+
"epoch": 0.14,
|
1308 |
+
"grad_norm": 0.5593956329311583,
|
1309 |
+
"learning_rate": 9.701639835100513e-05,
|
1310 |
+
"loss": 1.249,
|
1311 |
+
"step": 186
|
1312 |
+
},
|
1313 |
+
{
|
1314 |
+
"epoch": 0.14,
|
1315 |
+
"grad_norm": 0.5591047172889141,
|
1316 |
+
"learning_rate": 9.697552472703205e-05,
|
1317 |
+
"loss": 1.2756,
|
1318 |
+
"step": 187
|
1319 |
+
},
|
1320 |
+
{
|
1321 |
+
"epoch": 0.14,
|
1322 |
+
"grad_norm": 0.5543029039316694,
|
1323 |
+
"learning_rate": 9.693438176141425e-05,
|
1324 |
+
"loss": 1.2915,
|
1325 |
+
"step": 188
|
1326 |
+
},
|
1327 |
+
{
|
1328 |
+
"epoch": 0.14,
|
1329 |
+
"grad_norm": 0.5494961227055172,
|
1330 |
+
"learning_rate": 9.68929696900515e-05,
|
1331 |
+
"loss": 1.313,
|
1332 |
+
"step": 189
|
1333 |
+
},
|
1334 |
+
{
|
1335 |
+
"epoch": 0.14,
|
1336 |
+
"grad_norm": 0.5541252042617403,
|
1337 |
+
"learning_rate": 9.685128875038647e-05,
|
1338 |
+
"loss": 1.2754,
|
1339 |
+
"step": 190
|
1340 |
+
},
|
1341 |
+
{
|
1342 |
+
"epoch": 0.14,
|
1343 |
+
"grad_norm": 0.5163534781462605,
|
1344 |
+
"learning_rate": 9.680933918140348e-05,
|
1345 |
+
"loss": 1.2681,
|
1346 |
+
"step": 191
|
1347 |
+
},
|
1348 |
+
{
|
1349 |
+
"epoch": 0.14,
|
1350 |
+
"grad_norm": 0.537157272716453,
|
1351 |
+
"learning_rate": 9.676712122362706e-05,
|
1352 |
+
"loss": 1.2551,
|
1353 |
+
"step": 192
|
1354 |
+
},
|
1355 |
+
{
|
1356 |
+
"epoch": 0.14,
|
1357 |
+
"grad_norm": 0.5397175193183968,
|
1358 |
+
"learning_rate": 9.672463511912055e-05,
|
1359 |
+
"loss": 1.2822,
|
1360 |
+
"step": 193
|
1361 |
+
},
|
1362 |
+
{
|
1363 |
+
"epoch": 0.14,
|
1364 |
+
"grad_norm": 0.5488691397441863,
|
1365 |
+
"learning_rate": 9.668188111148484e-05,
|
1366 |
+
"loss": 1.283,
|
1367 |
+
"step": 194
|
1368 |
+
},
|
1369 |
+
{
|
1370 |
+
"epoch": 0.14,
|
1371 |
+
"grad_norm": 0.5905761212464122,
|
1372 |
+
"learning_rate": 9.66388594458568e-05,
|
1373 |
+
"loss": 1.2896,
|
1374 |
+
"step": 195
|
1375 |
+
},
|
1376 |
+
{
|
1377 |
+
"epoch": 0.14,
|
1378 |
+
"grad_norm": 0.580369444338734,
|
1379 |
+
"learning_rate": 9.659557036890801e-05,
|
1380 |
+
"loss": 1.3416,
|
1381 |
+
"step": 196
|
1382 |
+
},
|
1383 |
+
{
|
1384 |
+
"epoch": 0.15,
|
1385 |
+
"grad_norm": 0.5262728809847318,
|
1386 |
+
"learning_rate": 9.655201412884327e-05,
|
1387 |
+
"loss": 1.2554,
|
1388 |
+
"step": 197
|
1389 |
+
},
|
1390 |
+
{
|
1391 |
+
"epoch": 0.15,
|
1392 |
+
"grad_norm": 0.5375550652008795,
|
1393 |
+
"learning_rate": 9.650819097539922e-05,
|
1394 |
+
"loss": 1.2612,
|
1395 |
+
"step": 198
|
1396 |
+
},
|
1397 |
+
{
|
1398 |
+
"epoch": 0.15,
|
1399 |
+
"grad_norm": 0.5208197207069616,
|
1400 |
+
"learning_rate": 9.646410115984289e-05,
|
1401 |
+
"loss": 1.2358,
|
1402 |
+
"step": 199
|
1403 |
+
},
|
1404 |
+
{
|
1405 |
+
"epoch": 0.15,
|
1406 |
+
"grad_norm": 0.5409371788748774,
|
1407 |
+
"learning_rate": 9.641974493497024e-05,
|
1408 |
+
"loss": 1.3262,
|
1409 |
+
"step": 200
|
1410 |
+
},
|
1411 |
+
{
|
1412 |
+
"epoch": 0.15,
|
1413 |
+
"grad_norm": 0.5389211233425135,
|
1414 |
+
"learning_rate": 9.637512255510475e-05,
|
1415 |
+
"loss": 1.2729,
|
1416 |
+
"step": 201
|
1417 |
+
},
|
1418 |
+
{
|
1419 |
+
"epoch": 0.15,
|
1420 |
+
"grad_norm": 0.5501782779153785,
|
1421 |
+
"learning_rate": 9.633023427609591e-05,
|
1422 |
+
"loss": 1.2322,
|
1423 |
+
"step": 202
|
1424 |
+
},
|
1425 |
+
{
|
1426 |
+
"epoch": 0.15,
|
1427 |
+
"grad_norm": 0.5678681105856288,
|
1428 |
+
"learning_rate": 9.628508035531785e-05,
|
1429 |
+
"loss": 1.3721,
|
1430 |
+
"step": 203
|
1431 |
+
},
|
1432 |
+
{
|
1433 |
+
"epoch": 0.15,
|
1434 |
+
"grad_norm": 0.5559621306210715,
|
1435 |
+
"learning_rate": 9.623966105166772e-05,
|
1436 |
+
"loss": 1.3267,
|
1437 |
+
"step": 204
|
1438 |
+
},
|
1439 |
+
{
|
1440 |
+
"epoch": 0.15,
|
1441 |
+
"grad_norm": 0.5417687907113425,
|
1442 |
+
"learning_rate": 9.619397662556435e-05,
|
1443 |
+
"loss": 1.2666,
|
1444 |
+
"step": 205
|
1445 |
+
},
|
1446 |
+
{
|
1447 |
+
"epoch": 0.15,
|
1448 |
+
"grad_norm": 0.5546614199696198,
|
1449 |
+
"learning_rate": 9.614802733894665e-05,
|
1450 |
+
"loss": 1.3389,
|
1451 |
+
"step": 206
|
1452 |
+
},
|
1453 |
+
{
|
1454 |
+
"epoch": 0.15,
|
1455 |
+
"grad_norm": 0.5594799442475286,
|
1456 |
+
"learning_rate": 9.610181345527217e-05,
|
1457 |
+
"loss": 1.2671,
|
1458 |
+
"step": 207
|
1459 |
+
},
|
1460 |
+
{
|
1461 |
+
"epoch": 0.15,
|
1462 |
+
"grad_norm": 0.5852167375394156,
|
1463 |
+
"learning_rate": 9.605533523951558e-05,
|
1464 |
+
"loss": 1.3335,
|
1465 |
+
"step": 208
|
1466 |
+
},
|
1467 |
+
{
|
1468 |
+
"epoch": 0.15,
|
1469 |
+
"grad_norm": 0.5465110917787175,
|
1470 |
+
"learning_rate": 9.600859295816708e-05,
|
1471 |
+
"loss": 1.3096,
|
1472 |
+
"step": 209
|
1473 |
+
},
|
1474 |
+
{
|
1475 |
+
"epoch": 0.16,
|
1476 |
+
"grad_norm": 0.5704616015169348,
|
1477 |
+
"learning_rate": 9.596158687923104e-05,
|
1478 |
+
"loss": 1.3022,
|
1479 |
+
"step": 210
|
1480 |
+
},
|
1481 |
+
{
|
1482 |
+
"epoch": 0.16,
|
1483 |
+
"grad_norm": 0.5617616139462727,
|
1484 |
+
"learning_rate": 9.591431727222424e-05,
|
1485 |
+
"loss": 1.3159,
|
1486 |
+
"step": 211
|
1487 |
+
},
|
1488 |
+
{
|
1489 |
+
"epoch": 0.16,
|
1490 |
+
"grad_norm": 0.5465602681324426,
|
1491 |
+
"learning_rate": 9.586678440817453e-05,
|
1492 |
+
"loss": 1.2708,
|
1493 |
+
"step": 212
|
1494 |
+
},
|
1495 |
+
{
|
1496 |
+
"epoch": 0.16,
|
1497 |
+
"grad_norm": 0.5864421378413351,
|
1498 |
+
"learning_rate": 9.581898855961912e-05,
|
1499 |
+
"loss": 1.2607,
|
1500 |
+
"step": 213
|
1501 |
+
},
|
1502 |
+
{
|
1503 |
+
"epoch": 0.16,
|
1504 |
+
"grad_norm": 0.556548001041405,
|
1505 |
+
"learning_rate": 9.577093000060312e-05,
|
1506 |
+
"loss": 1.3081,
|
1507 |
+
"step": 214
|
1508 |
+
},
|
1509 |
+
{
|
1510 |
+
"epoch": 0.16,
|
1511 |
+
"grad_norm": 0.5642842704902283,
|
1512 |
+
"learning_rate": 9.572260900667794e-05,
|
1513 |
+
"loss": 1.2759,
|
1514 |
+
"step": 215
|
1515 |
+
},
|
1516 |
+
{
|
1517 |
+
"epoch": 0.16,
|
1518 |
+
"grad_norm": 0.5486665255067006,
|
1519 |
+
"learning_rate": 9.567402585489963e-05,
|
1520 |
+
"loss": 1.2104,
|
1521 |
+
"step": 216
|
1522 |
+
},
|
1523 |
+
{
|
1524 |
+
"epoch": 0.16,
|
1525 |
+
"grad_norm": 0.5361207508020517,
|
1526 |
+
"learning_rate": 9.56251808238275e-05,
|
1527 |
+
"loss": 1.2451,
|
1528 |
+
"step": 217
|
1529 |
+
},
|
1530 |
+
{
|
1531 |
+
"epoch": 0.16,
|
1532 |
+
"grad_norm": 0.5149380805556683,
|
1533 |
+
"learning_rate": 9.557607419352226e-05,
|
1534 |
+
"loss": 1.2778,
|
1535 |
+
"step": 218
|
1536 |
+
},
|
1537 |
+
{
|
1538 |
+
"epoch": 0.16,
|
1539 |
+
"grad_norm": 0.5469266902951428,
|
1540 |
+
"learning_rate": 9.552670624554461e-05,
|
1541 |
+
"loss": 1.2617,
|
1542 |
+
"step": 219
|
1543 |
+
},
|
1544 |
+
{
|
1545 |
+
"epoch": 0.16,
|
1546 |
+
"grad_norm": 0.5430295319416,
|
1547 |
+
"learning_rate": 9.54770772629535e-05,
|
1548 |
+
"loss": 1.2915,
|
1549 |
+
"step": 220
|
1550 |
+
},
|
1551 |
+
{
|
1552 |
+
"epoch": 0.16,
|
1553 |
+
"grad_norm": 0.5744217791056692,
|
1554 |
+
"learning_rate": 9.542718753030463e-05,
|
1555 |
+
"loss": 1.3281,
|
1556 |
+
"step": 221
|
1557 |
+
},
|
1558 |
+
{
|
1559 |
+
"epoch": 0.16,
|
1560 |
+
"grad_norm": 0.5587545969611539,
|
1561 |
+
"learning_rate": 9.537703733364871e-05,
|
1562 |
+
"loss": 1.2837,
|
1563 |
+
"step": 222
|
1564 |
+
},
|
1565 |
+
{
|
1566 |
+
"epoch": 0.16,
|
1567 |
+
"grad_norm": 0.5288053303373643,
|
1568 |
+
"learning_rate": 9.532662696052985e-05,
|
1569 |
+
"loss": 1.2949,
|
1570 |
+
"step": 223
|
1571 |
+
},
|
1572 |
+
{
|
1573 |
+
"epoch": 0.17,
|
1574 |
+
"grad_norm": 0.5791175310063906,
|
1575 |
+
"learning_rate": 9.527595669998399e-05,
|
1576 |
+
"loss": 1.2917,
|
1577 |
+
"step": 224
|
1578 |
+
},
|
1579 |
+
{
|
1580 |
+
"epoch": 0.17,
|
1581 |
+
"grad_norm": 0.5250029719207272,
|
1582 |
+
"learning_rate": 9.522502684253709e-05,
|
1583 |
+
"loss": 1.2375,
|
1584 |
+
"step": 225
|
1585 |
+
},
|
1586 |
+
{
|
1587 |
+
"epoch": 0.17,
|
1588 |
+
"grad_norm": 0.5177601049436101,
|
1589 |
+
"learning_rate": 9.517383768020361e-05,
|
1590 |
+
"loss": 1.2695,
|
1591 |
+
"step": 226
|
1592 |
+
},
|
1593 |
+
{
|
1594 |
+
"epoch": 0.17,
|
1595 |
+
"grad_norm": 0.5554993860583297,
|
1596 |
+
"learning_rate": 9.512238950648474e-05,
|
1597 |
+
"loss": 1.2917,
|
1598 |
+
"step": 227
|
1599 |
+
},
|
1600 |
+
{
|
1601 |
+
"epoch": 0.17,
|
1602 |
+
"grad_norm": 0.5738329488665082,
|
1603 |
+
"learning_rate": 9.507068261636679e-05,
|
1604 |
+
"loss": 1.2944,
|
1605 |
+
"step": 228
|
1606 |
+
},
|
1607 |
+
{
|
1608 |
+
"epoch": 0.17,
|
1609 |
+
"grad_norm": 0.5562896023700302,
|
1610 |
+
"learning_rate": 9.501871730631942e-05,
|
1611 |
+
"loss": 1.3296,
|
1612 |
+
"step": 229
|
1613 |
+
},
|
1614 |
+
{
|
1615 |
+
"epoch": 0.17,
|
1616 |
+
"grad_norm": 0.5416347008024398,
|
1617 |
+
"learning_rate": 9.496649387429404e-05,
|
1618 |
+
"loss": 1.2437,
|
1619 |
+
"step": 230
|
1620 |
+
},
|
1621 |
+
{
|
1622 |
+
"epoch": 0.17,
|
1623 |
+
"grad_norm": 0.5699356753997783,
|
1624 |
+
"learning_rate": 9.491401261972195e-05,
|
1625 |
+
"loss": 1.2705,
|
1626 |
+
"step": 231
|
1627 |
+
},
|
1628 |
+
{
|
1629 |
+
"epoch": 0.17,
|
1630 |
+
"grad_norm": 0.5481624625613764,
|
1631 |
+
"learning_rate": 9.486127384351282e-05,
|
1632 |
+
"loss": 1.3779,
|
1633 |
+
"step": 232
|
1634 |
+
},
|
1635 |
+
{
|
1636 |
+
"epoch": 0.17,
|
1637 |
+
"grad_norm": 0.5688206917165098,
|
1638 |
+
"learning_rate": 9.480827784805278e-05,
|
1639 |
+
"loss": 1.2754,
|
1640 |
+
"step": 233
|
1641 |
+
},
|
1642 |
+
{
|
1643 |
+
"epoch": 0.17,
|
1644 |
+
"grad_norm": 0.5490377714658476,
|
1645 |
+
"learning_rate": 9.475502493720283e-05,
|
1646 |
+
"loss": 1.3125,
|
1647 |
+
"step": 234
|
1648 |
+
},
|
1649 |
+
{
|
1650 |
+
"epoch": 0.17,
|
1651 |
+
"grad_norm": 0.5355672804730123,
|
1652 |
+
"learning_rate": 9.470151541629699e-05,
|
1653 |
+
"loss": 1.2627,
|
1654 |
+
"step": 235
|
1655 |
+
},
|
1656 |
+
{
|
1657 |
+
"epoch": 0.17,
|
1658 |
+
"grad_norm": 0.5905840590902287,
|
1659 |
+
"learning_rate": 9.464774959214063e-05,
|
1660 |
+
"loss": 1.3027,
|
1661 |
+
"step": 236
|
1662 |
+
},
|
1663 |
+
{
|
1664 |
+
"epoch": 0.18,
|
1665 |
+
"grad_norm": 0.56064622426517,
|
1666 |
+
"learning_rate": 9.459372777300864e-05,
|
1667 |
+
"loss": 1.2065,
|
1668 |
+
"step": 237
|
1669 |
+
},
|
1670 |
+
{
|
1671 |
+
"epoch": 0.18,
|
1672 |
+
"grad_norm": 0.5568610691565873,
|
1673 |
+
"learning_rate": 9.45394502686437e-05,
|
1674 |
+
"loss": 1.3223,
|
1675 |
+
"step": 238
|
1676 |
+
},
|
1677 |
+
{
|
1678 |
+
"epoch": 0.18,
|
1679 |
+
"grad_norm": 0.5300725401389981,
|
1680 |
+
"learning_rate": 9.448491739025454e-05,
|
1681 |
+
"loss": 1.2805,
|
1682 |
+
"step": 239
|
1683 |
+
},
|
1684 |
+
{
|
1685 |
+
"epoch": 0.18,
|
1686 |
+
"grad_norm": 0.5519662242216672,
|
1687 |
+
"learning_rate": 9.44301294505141e-05,
|
1688 |
+
"loss": 1.2371,
|
1689 |
+
"step": 240
|
1690 |
+
},
|
1691 |
+
{
|
1692 |
+
"epoch": 0.18,
|
1693 |
+
"grad_norm": 0.5402101018249572,
|
1694 |
+
"learning_rate": 9.437508676355773e-05,
|
1695 |
+
"loss": 1.2749,
|
1696 |
+
"step": 241
|
1697 |
+
},
|
1698 |
+
{
|
1699 |
+
"epoch": 0.18,
|
1700 |
+
"grad_norm": 0.5389383005608104,
|
1701 |
+
"learning_rate": 9.431978964498143e-05,
|
1702 |
+
"loss": 1.2876,
|
1703 |
+
"step": 242
|
1704 |
+
},
|
1705 |
+
{
|
1706 |
+
"epoch": 0.18,
|
1707 |
+
"grad_norm": 0.5310718244911751,
|
1708 |
+
"learning_rate": 9.426423841184005e-05,
|
1709 |
+
"loss": 1.3057,
|
1710 |
+
"step": 243
|
1711 |
+
},
|
1712 |
+
{
|
1713 |
+
"epoch": 0.18,
|
1714 |
+
"grad_norm": 0.5454082533825911,
|
1715 |
+
"learning_rate": 9.420843338264542e-05,
|
1716 |
+
"loss": 1.2578,
|
1717 |
+
"step": 244
|
1718 |
+
},
|
1719 |
+
{
|
1720 |
+
"epoch": 0.18,
|
1721 |
+
"grad_norm": 0.565349361879851,
|
1722 |
+
"learning_rate": 9.415237487736452e-05,
|
1723 |
+
"loss": 1.3306,
|
1724 |
+
"step": 245
|
1725 |
+
},
|
1726 |
+
{
|
1727 |
+
"epoch": 0.18,
|
1728 |
+
"grad_norm": 0.5224746893789486,
|
1729 |
+
"learning_rate": 9.409606321741775e-05,
|
1730 |
+
"loss": 1.2598,
|
1731 |
+
"step": 246
|
1732 |
+
},
|
1733 |
+
{
|
1734 |
+
"epoch": 0.18,
|
1735 |
+
"grad_norm": 0.5440997273729092,
|
1736 |
+
"learning_rate": 9.403949872567695e-05,
|
1737 |
+
"loss": 1.2749,
|
1738 |
+
"step": 247
|
1739 |
+
},
|
1740 |
+
{
|
1741 |
+
"epoch": 0.18,
|
1742 |
+
"grad_norm": 0.5668696203741111,
|
1743 |
+
"learning_rate": 9.398268172646365e-05,
|
1744 |
+
"loss": 1.2739,
|
1745 |
+
"step": 248
|
1746 |
+
},
|
1747 |
+
{
|
1748 |
+
"epoch": 0.18,
|
1749 |
+
"grad_norm": 0.538410569856225,
|
1750 |
+
"learning_rate": 9.392561254554713e-05,
|
1751 |
+
"loss": 1.2734,
|
1752 |
+
"step": 249
|
1753 |
+
},
|
1754 |
+
{
|
1755 |
+
"epoch": 0.18,
|
1756 |
+
"grad_norm": 0.5458663263053075,
|
1757 |
+
"learning_rate": 9.386829151014262e-05,
|
1758 |
+
"loss": 1.3101,
|
1759 |
+
"step": 250
|
1760 |
+
},
|
1761 |
+
{
|
1762 |
+
"epoch": 0.19,
|
1763 |
+
"grad_norm": 0.537905713825921,
|
1764 |
+
"learning_rate": 9.381071894890941e-05,
|
1765 |
+
"loss": 1.2666,
|
1766 |
+
"step": 251
|
1767 |
+
},
|
1768 |
+
{
|
1769 |
+
"epoch": 0.19,
|
1770 |
+
"grad_norm": 0.5288916095430457,
|
1771 |
+
"learning_rate": 9.375289519194894e-05,
|
1772 |
+
"loss": 1.2666,
|
1773 |
+
"step": 252
|
1774 |
+
},
|
1775 |
+
{
|
1776 |
+
"epoch": 0.19,
|
1777 |
+
"grad_norm": 0.5335913282729025,
|
1778 |
+
"learning_rate": 9.369482057080292e-05,
|
1779 |
+
"loss": 1.2886,
|
1780 |
+
"step": 253
|
1781 |
+
},
|
1782 |
+
{
|
1783 |
+
"epoch": 0.19,
|
1784 |
+
"grad_norm": 0.5523824410197196,
|
1785 |
+
"learning_rate": 9.363649541845142e-05,
|
1786 |
+
"loss": 1.2571,
|
1787 |
+
"step": 254
|
1788 |
+
},
|
1789 |
+
{
|
1790 |
+
"epoch": 0.19,
|
1791 |
+
"grad_norm": 0.5912264857528259,
|
1792 |
+
"learning_rate": 9.357792006931098e-05,
|
1793 |
+
"loss": 1.261,
|
1794 |
+
"step": 255
|
1795 |
+
},
|
1796 |
+
{
|
1797 |
+
"epoch": 0.19,
|
1798 |
+
"grad_norm": 0.5594499774840426,
|
1799 |
+
"learning_rate": 9.35190948592327e-05,
|
1800 |
+
"loss": 1.3027,
|
1801 |
+
"step": 256
|
1802 |
+
},
|
1803 |
+
{
|
1804 |
+
"epoch": 0.19,
|
1805 |
+
"grad_norm": 0.5379207919206825,
|
1806 |
+
"learning_rate": 9.346002012550027e-05,
|
1807 |
+
"loss": 1.2983,
|
1808 |
+
"step": 257
|
1809 |
+
},
|
1810 |
+
{
|
1811 |
+
"epoch": 0.19,
|
1812 |
+
"grad_norm": 0.5455629199690059,
|
1813 |
+
"learning_rate": 9.340069620682806e-05,
|
1814 |
+
"loss": 1.2695,
|
1815 |
+
"step": 258
|
1816 |
+
},
|
1817 |
+
{
|
1818 |
+
"epoch": 0.19,
|
1819 |
+
"grad_norm": 0.5471737544580354,
|
1820 |
+
"learning_rate": 9.334112344335924e-05,
|
1821 |
+
"loss": 1.3047,
|
1822 |
+
"step": 259
|
1823 |
+
},
|
1824 |
+
{
|
1825 |
+
"epoch": 0.19,
|
1826 |
+
"grad_norm": 0.5397100655209365,
|
1827 |
+
"learning_rate": 9.328130217666366e-05,
|
1828 |
+
"loss": 1.2896,
|
1829 |
+
"step": 260
|
1830 |
+
},
|
1831 |
+
{
|
1832 |
+
"epoch": 0.19,
|
1833 |
+
"grad_norm": 0.5636004509867364,
|
1834 |
+
"learning_rate": 9.322123274973613e-05,
|
1835 |
+
"loss": 1.3501,
|
1836 |
+
"step": 261
|
1837 |
+
},
|
1838 |
+
{
|
1839 |
+
"epoch": 0.19,
|
1840 |
+
"grad_norm": 0.5605154015144495,
|
1841 |
+
"learning_rate": 9.316091550699424e-05,
|
1842 |
+
"loss": 1.2983,
|
1843 |
+
"step": 262
|
1844 |
+
},
|
1845 |
+
{
|
1846 |
+
"epoch": 0.19,
|
1847 |
+
"grad_norm": 0.5461515781521593,
|
1848 |
+
"learning_rate": 9.310035079427651e-05,
|
1849 |
+
"loss": 1.269,
|
1850 |
+
"step": 263
|
1851 |
+
},
|
1852 |
+
{
|
1853 |
+
"epoch": 0.2,
|
1854 |
+
"grad_norm": 0.5175024878789147,
|
1855 |
+
"learning_rate": 9.303953895884033e-05,
|
1856 |
+
"loss": 1.1653,
|
1857 |
+
"step": 264
|
1858 |
+
},
|
1859 |
+
{
|
1860 |
+
"epoch": 0.2,
|
1861 |
+
"grad_norm": 0.5224669601631107,
|
1862 |
+
"learning_rate": 9.297848034936006e-05,
|
1863 |
+
"loss": 1.2554,
|
1864 |
+
"step": 265
|
1865 |
+
},
|
1866 |
+
{
|
1867 |
+
"epoch": 0.2,
|
1868 |
+
"grad_norm": 0.5444106809363777,
|
1869 |
+
"learning_rate": 9.291717531592494e-05,
|
1870 |
+
"loss": 1.293,
|
1871 |
+
"step": 266
|
1872 |
+
},
|
1873 |
+
{
|
1874 |
+
"epoch": 0.2,
|
1875 |
+
"grad_norm": 0.5287552712313793,
|
1876 |
+
"learning_rate": 9.285562421003715e-05,
|
1877 |
+
"loss": 1.2651,
|
1878 |
+
"step": 267
|
1879 |
+
},
|
1880 |
+
{
|
1881 |
+
"epoch": 0.2,
|
1882 |
+
"grad_norm": 0.5381309609110954,
|
1883 |
+
"learning_rate": 9.279382738460971e-05,
|
1884 |
+
"loss": 1.2812,
|
1885 |
+
"step": 268
|
1886 |
+
},
|
1887 |
+
{
|
1888 |
+
"epoch": 0.2,
|
1889 |
+
"grad_norm": 0.5528803396804242,
|
1890 |
+
"learning_rate": 9.273178519396459e-05,
|
1891 |
+
"loss": 1.3149,
|
1892 |
+
"step": 269
|
1893 |
+
},
|
1894 |
+
{
|
1895 |
+
"epoch": 0.2,
|
1896 |
+
"grad_norm": 0.5270531797880375,
|
1897 |
+
"learning_rate": 9.266949799383053e-05,
|
1898 |
+
"loss": 1.2615,
|
1899 |
+
"step": 270
|
1900 |
+
},
|
1901 |
+
{
|
1902 |
+
"epoch": 0.2,
|
1903 |
+
"grad_norm": 0.5488129774725259,
|
1904 |
+
"learning_rate": 9.260696614134114e-05,
|
1905 |
+
"loss": 1.2837,
|
1906 |
+
"step": 271
|
1907 |
+
},
|
1908 |
+
{
|
1909 |
+
"epoch": 0.2,
|
1910 |
+
"grad_norm": 0.5335083589116082,
|
1911 |
+
"learning_rate": 9.254418999503271e-05,
|
1912 |
+
"loss": 1.2339,
|
1913 |
+
"step": 272
|
1914 |
+
},
|
1915 |
+
{
|
1916 |
+
"epoch": 0.2,
|
1917 |
+
"grad_norm": 0.5974061497388541,
|
1918 |
+
"learning_rate": 9.248116991484229e-05,
|
1919 |
+
"loss": 1.2825,
|
1920 |
+
"step": 273
|
1921 |
+
},
|
1922 |
+
{
|
1923 |
+
"epoch": 0.2,
|
1924 |
+
"grad_norm": 0.5381713380415607,
|
1925 |
+
"learning_rate": 9.241790626210549e-05,
|
1926 |
+
"loss": 1.1895,
|
1927 |
+
"step": 274
|
1928 |
+
},
|
1929 |
+
{
|
1930 |
+
"epoch": 0.2,
|
1931 |
+
"grad_norm": 0.5384430847504001,
|
1932 |
+
"learning_rate": 9.235439939955457e-05,
|
1933 |
+
"loss": 1.2358,
|
1934 |
+
"step": 275
|
1935 |
+
},
|
1936 |
+
{
|
1937 |
+
"epoch": 0.2,
|
1938 |
+
"grad_norm": 0.5256588888016233,
|
1939 |
+
"learning_rate": 9.229064969131621e-05,
|
1940 |
+
"loss": 1.2407,
|
1941 |
+
"step": 276
|
1942 |
+
},
|
1943 |
+
{
|
1944 |
+
"epoch": 0.2,
|
1945 |
+
"grad_norm": 0.5242296953154587,
|
1946 |
+
"learning_rate": 9.222665750290953e-05,
|
1947 |
+
"loss": 1.2832,
|
1948 |
+
"step": 277
|
1949 |
+
},
|
1950 |
+
{
|
1951 |
+
"epoch": 0.21,
|
1952 |
+
"grad_norm": 0.5224106607183625,
|
1953 |
+
"learning_rate": 9.216242320124388e-05,
|
1954 |
+
"loss": 1.2388,
|
1955 |
+
"step": 278
|
1956 |
+
},
|
1957 |
+
{
|
1958 |
+
"epoch": 0.21,
|
1959 |
+
"grad_norm": 0.540400861953043,
|
1960 |
+
"learning_rate": 9.20979471546169e-05,
|
1961 |
+
"loss": 1.2695,
|
1962 |
+
"step": 279
|
1963 |
+
},
|
1964 |
+
{
|
1965 |
+
"epoch": 0.21,
|
1966 |
+
"grad_norm": 0.5289483661482471,
|
1967 |
+
"learning_rate": 9.203322973271223e-05,
|
1968 |
+
"loss": 1.2832,
|
1969 |
+
"step": 280
|
1970 |
+
},
|
1971 |
+
{
|
1972 |
+
"epoch": 0.21,
|
1973 |
+
"grad_norm": 0.5376637104674151,
|
1974 |
+
"learning_rate": 9.19682713065975e-05,
|
1975 |
+
"loss": 1.2783,
|
1976 |
+
"step": 281
|
1977 |
+
},
|
1978 |
+
{
|
1979 |
+
"epoch": 0.21,
|
1980 |
+
"grad_norm": 0.5547766359095799,
|
1981 |
+
"learning_rate": 9.19030722487222e-05,
|
1982 |
+
"loss": 1.2515,
|
1983 |
+
"step": 282
|
1984 |
+
},
|
1985 |
+
{
|
1986 |
+
"epoch": 0.21,
|
1987 |
+
"grad_norm": 0.5431030883095361,
|
1988 |
+
"learning_rate": 9.183763293291549e-05,
|
1989 |
+
"loss": 1.2346,
|
1990 |
+
"step": 283
|
1991 |
+
},
|
1992 |
+
{
|
1993 |
+
"epoch": 0.21,
|
1994 |
+
"grad_norm": 0.5767856753870191,
|
1995 |
+
"learning_rate": 9.17719537343841e-05,
|
1996 |
+
"loss": 1.2974,
|
1997 |
+
"step": 284
|
1998 |
+
},
|
1999 |
+
{
|
2000 |
+
"epoch": 0.21,
|
2001 |
+
"grad_norm": 0.5356401648893151,
|
2002 |
+
"learning_rate": 9.170603502971016e-05,
|
2003 |
+
"loss": 1.2532,
|
2004 |
+
"step": 285
|
2005 |
+
},
|
2006 |
+
{
|
2007 |
+
"epoch": 0.21,
|
2008 |
+
"grad_norm": 0.5528695803408737,
|
2009 |
+
"learning_rate": 9.163987719684907e-05,
|
2010 |
+
"loss": 1.3442,
|
2011 |
+
"step": 286
|
2012 |
+
},
|
2013 |
+
{
|
2014 |
+
"epoch": 0.21,
|
2015 |
+
"grad_norm": 0.5356080125920785,
|
2016 |
+
"learning_rate": 9.157348061512727e-05,
|
2017 |
+
"loss": 1.2686,
|
2018 |
+
"step": 287
|
2019 |
+
},
|
2020 |
+
{
|
2021 |
+
"epoch": 0.21,
|
2022 |
+
"grad_norm": 0.5778656916381988,
|
2023 |
+
"learning_rate": 9.150684566524012e-05,
|
2024 |
+
"loss": 1.2041,
|
2025 |
+
"step": 288
|
2026 |
+
},
|
2027 |
+
{
|
2028 |
+
"epoch": 0.21,
|
2029 |
+
"grad_norm": 0.5328749801157324,
|
2030 |
+
"learning_rate": 9.143997272924973e-05,
|
2031 |
+
"loss": 1.2437,
|
2032 |
+
"step": 289
|
2033 |
+
},
|
2034 |
+
{
|
2035 |
+
"epoch": 0.21,
|
2036 |
+
"grad_norm": 0.5656275076768376,
|
2037 |
+
"learning_rate": 9.13728621905827e-05,
|
2038 |
+
"loss": 1.2886,
|
2039 |
+
"step": 290
|
2040 |
+
},
|
2041 |
+
{
|
2042 |
+
"epoch": 0.22,
|
2043 |
+
"grad_norm": 0.5655646337419664,
|
2044 |
+
"learning_rate": 9.130551443402799e-05,
|
2045 |
+
"loss": 1.2783,
|
2046 |
+
"step": 291
|
2047 |
+
},
|
2048 |
+
{
|
2049 |
+
"epoch": 0.22,
|
2050 |
+
"grad_norm": 0.567975953014803,
|
2051 |
+
"learning_rate": 9.123792984573466e-05,
|
2052 |
+
"loss": 1.3223,
|
2053 |
+
"step": 292
|
2054 |
+
},
|
2055 |
+
{
|
2056 |
+
"epoch": 0.22,
|
2057 |
+
"grad_norm": 0.5361585380833186,
|
2058 |
+
"learning_rate": 9.117010881320973e-05,
|
2059 |
+
"loss": 1.2231,
|
2060 |
+
"step": 293
|
2061 |
+
},
|
2062 |
+
{
|
2063 |
+
"epoch": 0.22,
|
2064 |
+
"grad_norm": 0.5527612532950269,
|
2065 |
+
"learning_rate": 9.110205172531585e-05,
|
2066 |
+
"loss": 1.3506,
|
2067 |
+
"step": 294
|
2068 |
+
},
|
2069 |
+
{
|
2070 |
+
"epoch": 0.22,
|
2071 |
+
"grad_norm": 0.5330323483779986,
|
2072 |
+
"learning_rate": 9.103375897226918e-05,
|
2073 |
+
"loss": 1.2974,
|
2074 |
+
"step": 295
|
2075 |
+
},
|
2076 |
+
{
|
2077 |
+
"epoch": 0.22,
|
2078 |
+
"grad_norm": 0.541076058179259,
|
2079 |
+
"learning_rate": 9.096523094563708e-05,
|
2080 |
+
"loss": 1.2617,
|
2081 |
+
"step": 296
|
2082 |
+
},
|
2083 |
+
{
|
2084 |
+
"epoch": 0.22,
|
2085 |
+
"grad_norm": 0.5340836977689315,
|
2086 |
+
"learning_rate": 9.089646803833589e-05,
|
2087 |
+
"loss": 1.2603,
|
2088 |
+
"step": 297
|
2089 |
+
},
|
2090 |
+
{
|
2091 |
+
"epoch": 0.22,
|
2092 |
+
"grad_norm": 0.5383753245320845,
|
2093 |
+
"learning_rate": 9.082747064462867e-05,
|
2094 |
+
"loss": 1.2583,
|
2095 |
+
"step": 298
|
2096 |
+
},
|
2097 |
+
{
|
2098 |
+
"epoch": 0.22,
|
2099 |
+
"grad_norm": 0.5192836861689345,
|
2100 |
+
"learning_rate": 9.075823916012298e-05,
|
2101 |
+
"loss": 1.2568,
|
2102 |
+
"step": 299
|
2103 |
+
},
|
2104 |
+
{
|
2105 |
+
"epoch": 0.22,
|
2106 |
+
"grad_norm": 0.5744817919271316,
|
2107 |
+
"learning_rate": 9.068877398176852e-05,
|
2108 |
+
"loss": 1.2131,
|
2109 |
+
"step": 300
|
2110 |
+
},
|
2111 |
+
{
|
2112 |
+
"epoch": 0.22,
|
2113 |
+
"grad_norm": 0.5323047093147705,
|
2114 |
+
"learning_rate": 9.061907550785498e-05,
|
2115 |
+
"loss": 1.2783,
|
2116 |
+
"step": 301
|
2117 |
+
},
|
2118 |
+
{
|
2119 |
+
"epoch": 0.22,
|
2120 |
+
"grad_norm": 0.5607328564400242,
|
2121 |
+
"learning_rate": 9.054914413800961e-05,
|
2122 |
+
"loss": 1.3398,
|
2123 |
+
"step": 302
|
2124 |
+
},
|
2125 |
+
{
|
2126 |
+
"epoch": 0.22,
|
2127 |
+
"grad_norm": 0.5782257895199574,
|
2128 |
+
"learning_rate": 9.047898027319507e-05,
|
2129 |
+
"loss": 1.2759,
|
2130 |
+
"step": 303
|
2131 |
+
},
|
2132 |
+
{
|
2133 |
+
"epoch": 0.22,
|
2134 |
+
"grad_norm": 0.546644793451931,
|
2135 |
+
"learning_rate": 9.040858431570702e-05,
|
2136 |
+
"loss": 1.2632,
|
2137 |
+
"step": 304
|
2138 |
+
},
|
2139 |
+
{
|
2140 |
+
"epoch": 0.23,
|
2141 |
+
"grad_norm": 0.5535852227341702,
|
2142 |
+
"learning_rate": 9.033795666917191e-05,
|
2143 |
+
"loss": 1.312,
|
2144 |
+
"step": 305
|
2145 |
+
},
|
2146 |
+
{
|
2147 |
+
"epoch": 0.23,
|
2148 |
+
"grad_norm": 0.5371002551511538,
|
2149 |
+
"learning_rate": 9.026709773854457e-05,
|
2150 |
+
"loss": 1.2593,
|
2151 |
+
"step": 306
|
2152 |
+
},
|
2153 |
+
{
|
2154 |
+
"epoch": 0.23,
|
2155 |
+
"grad_norm": 0.5394441228369942,
|
2156 |
+
"learning_rate": 9.019600793010597e-05,
|
2157 |
+
"loss": 1.269,
|
2158 |
+
"step": 307
|
2159 |
+
},
|
2160 |
+
{
|
2161 |
+
"epoch": 0.23,
|
2162 |
+
"grad_norm": 0.5512445550522174,
|
2163 |
+
"learning_rate": 9.012468765146079e-05,
|
2164 |
+
"loss": 1.2686,
|
2165 |
+
"step": 308
|
2166 |
+
},
|
2167 |
+
{
|
2168 |
+
"epoch": 0.23,
|
2169 |
+
"grad_norm": 0.5043850111181398,
|
2170 |
+
"learning_rate": 9.005313731153524e-05,
|
2171 |
+
"loss": 1.2363,
|
2172 |
+
"step": 309
|
2173 |
+
},
|
2174 |
+
{
|
2175 |
+
"epoch": 0.23,
|
2176 |
+
"grad_norm": 0.5294693808157453,
|
2177 |
+
"learning_rate": 8.998135732057458e-05,
|
2178 |
+
"loss": 1.2725,
|
2179 |
+
"step": 310
|
2180 |
+
},
|
2181 |
+
{
|
2182 |
+
"epoch": 0.23,
|
2183 |
+
"grad_norm": 0.5235449664008548,
|
2184 |
+
"learning_rate": 8.990934809014077e-05,
|
2185 |
+
"loss": 1.249,
|
2186 |
+
"step": 311
|
2187 |
+
},
|
2188 |
+
{
|
2189 |
+
"epoch": 0.23,
|
2190 |
+
"grad_norm": 0.5228082226582549,
|
2191 |
+
"learning_rate": 8.983711003311024e-05,
|
2192 |
+
"loss": 1.2153,
|
2193 |
+
"step": 312
|
2194 |
+
},
|
2195 |
+
{
|
2196 |
+
"epoch": 0.23,
|
2197 |
+
"grad_norm": 0.5525620828249341,
|
2198 |
+
"learning_rate": 8.976464356367134e-05,
|
2199 |
+
"loss": 1.2136,
|
2200 |
+
"step": 313
|
2201 |
+
},
|
2202 |
+
{
|
2203 |
+
"epoch": 0.23,
|
2204 |
+
"grad_norm": 0.5605215996168639,
|
2205 |
+
"learning_rate": 8.96919490973221e-05,
|
2206 |
+
"loss": 1.271,
|
2207 |
+
"step": 314
|
2208 |
+
},
|
2209 |
+
{
|
2210 |
+
"epoch": 0.23,
|
2211 |
+
"grad_norm": 0.5277359930208506,
|
2212 |
+
"learning_rate": 8.961902705086785e-05,
|
2213 |
+
"loss": 1.1836,
|
2214 |
+
"step": 315
|
2215 |
+
},
|
2216 |
+
{
|
2217 |
+
"epoch": 0.23,
|
2218 |
+
"grad_norm": 0.5405930304733125,
|
2219 |
+
"learning_rate": 8.954587784241871e-05,
|
2220 |
+
"loss": 1.2705,
|
2221 |
+
"step": 316
|
2222 |
+
},
|
2223 |
+
{
|
2224 |
+
"epoch": 0.23,
|
2225 |
+
"grad_norm": 0.5248476194932483,
|
2226 |
+
"learning_rate": 8.947250189138731e-05,
|
2227 |
+
"loss": 1.2607,
|
2228 |
+
"step": 317
|
2229 |
+
},
|
2230 |
+
{
|
2231 |
+
"epoch": 0.24,
|
2232 |
+
"grad_norm": 0.573678896783169,
|
2233 |
+
"learning_rate": 8.939889961848634e-05,
|
2234 |
+
"loss": 1.2727,
|
2235 |
+
"step": 318
|
2236 |
+
},
|
2237 |
+
{
|
2238 |
+
"epoch": 0.24,
|
2239 |
+
"grad_norm": 0.5773485095137408,
|
2240 |
+
"learning_rate": 8.932507144572616e-05,
|
2241 |
+
"loss": 1.2607,
|
2242 |
+
"step": 319
|
2243 |
+
},
|
2244 |
+
{
|
2245 |
+
"epoch": 0.24,
|
2246 |
+
"grad_norm": 0.5633980526681968,
|
2247 |
+
"learning_rate": 8.925101779641232e-05,
|
2248 |
+
"loss": 1.1917,
|
2249 |
+
"step": 320
|
2250 |
+
},
|
2251 |
+
{
|
2252 |
+
"epoch": 0.24,
|
2253 |
+
"grad_norm": 0.5300371631849218,
|
2254 |
+
"learning_rate": 8.917673909514322e-05,
|
2255 |
+
"loss": 1.3105,
|
2256 |
+
"step": 321
|
2257 |
+
},
|
2258 |
+
{
|
2259 |
+
"epoch": 0.24,
|
2260 |
+
"grad_norm": 0.5310192196200603,
|
2261 |
+
"learning_rate": 8.910223576780758e-05,
|
2262 |
+
"loss": 1.2808,
|
2263 |
+
"step": 322
|
2264 |
+
},
|
2265 |
+
{
|
2266 |
+
"epoch": 0.24,
|
2267 |
+
"grad_norm": 0.5234569464366723,
|
2268 |
+
"learning_rate": 8.902750824158212e-05,
|
2269 |
+
"loss": 1.2468,
|
2270 |
+
"step": 323
|
2271 |
+
},
|
2272 |
+
{
|
2273 |
+
"epoch": 0.24,
|
2274 |
+
"grad_norm": 0.5473770126434013,
|
2275 |
+
"learning_rate": 8.895255694492896e-05,
|
2276 |
+
"loss": 1.2676,
|
2277 |
+
"step": 324
|
2278 |
+
},
|
2279 |
+
{
|
2280 |
+
"epoch": 0.24,
|
2281 |
+
"grad_norm": 0.5670393642092653,
|
2282 |
+
"learning_rate": 8.887738230759333e-05,
|
2283 |
+
"loss": 1.2456,
|
2284 |
+
"step": 325
|
2285 |
+
},
|
2286 |
+
{
|
2287 |
+
"epoch": 0.24,
|
2288 |
+
"grad_norm": 0.5484650752546845,
|
2289 |
+
"learning_rate": 8.880198476060095e-05,
|
2290 |
+
"loss": 1.251,
|
2291 |
+
"step": 326
|
2292 |
+
},
|
2293 |
+
{
|
2294 |
+
"epoch": 0.24,
|
2295 |
+
"grad_norm": 0.5569076336735002,
|
2296 |
+
"learning_rate": 8.872636473625565e-05,
|
2297 |
+
"loss": 1.272,
|
2298 |
+
"step": 327
|
2299 |
+
},
|
2300 |
+
{
|
2301 |
+
"epoch": 0.24,
|
2302 |
+
"grad_norm": 0.5237290090420638,
|
2303 |
+
"learning_rate": 8.865052266813685e-05,
|
2304 |
+
"loss": 1.2822,
|
2305 |
+
"step": 328
|
2306 |
+
},
|
2307 |
+
{
|
2308 |
+
"epoch": 0.24,
|
2309 |
+
"grad_norm": 0.5507489271814671,
|
2310 |
+
"learning_rate": 8.857445899109715e-05,
|
2311 |
+
"loss": 1.2783,
|
2312 |
+
"step": 329
|
2313 |
+
},
|
2314 |
+
{
|
2315 |
+
"epoch": 0.24,
|
2316 |
+
"grad_norm": 0.5527246685898635,
|
2317 |
+
"learning_rate": 8.849817414125973e-05,
|
2318 |
+
"loss": 1.2705,
|
2319 |
+
"step": 330
|
2320 |
+
},
|
2321 |
+
{
|
2322 |
+
"epoch": 0.24,
|
2323 |
+
"grad_norm": 0.5544016696123183,
|
2324 |
+
"learning_rate": 8.84216685560159e-05,
|
2325 |
+
"loss": 1.2856,
|
2326 |
+
"step": 331
|
2327 |
+
},
|
2328 |
+
{
|
2329 |
+
"epoch": 0.25,
|
2330 |
+
"grad_norm": 0.5424146088216879,
|
2331 |
+
"learning_rate": 8.834494267402263e-05,
|
2332 |
+
"loss": 1.2202,
|
2333 |
+
"step": 332
|
2334 |
+
},
|
2335 |
+
{
|
2336 |
+
"epoch": 0.25,
|
2337 |
+
"grad_norm": 0.5323806898987287,
|
2338 |
+
"learning_rate": 8.826799693519996e-05,
|
2339 |
+
"loss": 1.248,
|
2340 |
+
"step": 333
|
2341 |
+
},
|
2342 |
+
{
|
2343 |
+
"epoch": 0.25,
|
2344 |
+
"grad_norm": 0.5595146324987165,
|
2345 |
+
"learning_rate": 8.819083178072852e-05,
|
2346 |
+
"loss": 1.1672,
|
2347 |
+
"step": 334
|
2348 |
+
},
|
2349 |
+
{
|
2350 |
+
"epoch": 0.25,
|
2351 |
+
"grad_norm": 0.5854406580169095,
|
2352 |
+
"learning_rate": 8.811344765304698e-05,
|
2353 |
+
"loss": 1.2146,
|
2354 |
+
"step": 335
|
2355 |
+
},
|
2356 |
+
{
|
2357 |
+
"epoch": 0.25,
|
2358 |
+
"grad_norm": 0.5697562446019094,
|
2359 |
+
"learning_rate": 8.80358449958496e-05,
|
2360 |
+
"loss": 1.2568,
|
2361 |
+
"step": 336
|
2362 |
+
},
|
2363 |
+
{
|
2364 |
+
"epoch": 0.25,
|
2365 |
+
"grad_norm": 0.5538906977604374,
|
2366 |
+
"learning_rate": 8.795802425408352e-05,
|
2367 |
+
"loss": 1.2544,
|
2368 |
+
"step": 337
|
2369 |
+
},
|
2370 |
+
{
|
2371 |
+
"epoch": 0.25,
|
2372 |
+
"grad_norm": 0.5211793067308176,
|
2373 |
+
"learning_rate": 8.787998587394637e-05,
|
2374 |
+
"loss": 1.2183,
|
2375 |
+
"step": 338
|
2376 |
+
},
|
2377 |
+
{
|
2378 |
+
"epoch": 0.25,
|
2379 |
+
"grad_norm": 0.5732446722628473,
|
2380 |
+
"learning_rate": 8.780173030288359e-05,
|
2381 |
+
"loss": 1.3057,
|
2382 |
+
"step": 339
|
2383 |
+
},
|
2384 |
+
{
|
2385 |
+
"epoch": 0.25,
|
2386 |
+
"grad_norm": 0.5352980539739127,
|
2387 |
+
"learning_rate": 8.772325798958597e-05,
|
2388 |
+
"loss": 1.2598,
|
2389 |
+
"step": 340
|
2390 |
+
},
|
2391 |
+
{
|
2392 |
+
"epoch": 0.25,
|
2393 |
+
"grad_norm": 0.5234917926015726,
|
2394 |
+
"learning_rate": 8.7644569383987e-05,
|
2395 |
+
"loss": 1.1982,
|
2396 |
+
"step": 341
|
2397 |
+
},
|
2398 |
+
{
|
2399 |
+
"epoch": 0.25,
|
2400 |
+
"grad_norm": 0.5844314852721842,
|
2401 |
+
"learning_rate": 8.75656649372603e-05,
|
2402 |
+
"loss": 1.2656,
|
2403 |
+
"step": 342
|
2404 |
+
},
|
2405 |
+
{
|
2406 |
+
"epoch": 0.25,
|
2407 |
+
"grad_norm": 0.5646854448914282,
|
2408 |
+
"learning_rate": 8.748654510181709e-05,
|
2409 |
+
"loss": 1.21,
|
2410 |
+
"step": 343
|
2411 |
+
},
|
2412 |
+
{
|
2413 |
+
"epoch": 0.25,
|
2414 |
+
"grad_norm": 0.5216723813831847,
|
2415 |
+
"learning_rate": 8.740721033130352e-05,
|
2416 |
+
"loss": 1.2329,
|
2417 |
+
"step": 344
|
2418 |
+
},
|
2419 |
+
{
|
2420 |
+
"epoch": 0.25,
|
2421 |
+
"grad_norm": 0.5099027314874095,
|
2422 |
+
"learning_rate": 8.732766108059813e-05,
|
2423 |
+
"loss": 1.2236,
|
2424 |
+
"step": 345
|
2425 |
+
},
|
2426 |
+
{
|
2427 |
+
"epoch": 0.26,
|
2428 |
+
"grad_norm": 0.5188769999186538,
|
2429 |
+
"learning_rate": 8.72478978058092e-05,
|
2430 |
+
"loss": 1.2905,
|
2431 |
+
"step": 346
|
2432 |
+
},
|
2433 |
+
{
|
2434 |
+
"epoch": 0.26,
|
2435 |
+
"grad_norm": 0.5245157404984339,
|
2436 |
+
"learning_rate": 8.716792096427217e-05,
|
2437 |
+
"loss": 1.2339,
|
2438 |
+
"step": 347
|
2439 |
+
},
|
2440 |
+
{
|
2441 |
+
"epoch": 0.26,
|
2442 |
+
"grad_norm": 0.5160205485678449,
|
2443 |
+
"learning_rate": 8.708773101454697e-05,
|
2444 |
+
"loss": 1.2524,
|
2445 |
+
"step": 348
|
2446 |
+
},
|
2447 |
+
{
|
2448 |
+
"epoch": 0.26,
|
2449 |
+
"grad_norm": 0.510633107323387,
|
2450 |
+
"learning_rate": 8.700732841641542e-05,
|
2451 |
+
"loss": 1.2756,
|
2452 |
+
"step": 349
|
2453 |
+
},
|
2454 |
+
{
|
2455 |
+
"epoch": 0.26,
|
2456 |
+
"grad_norm": 0.5097028901140956,
|
2457 |
+
"learning_rate": 8.692671363087863e-05,
|
2458 |
+
"loss": 1.2539,
|
2459 |
+
"step": 350
|
2460 |
+
},
|
2461 |
+
{
|
2462 |
+
"epoch": 0.26,
|
2463 |
+
"grad_norm": 0.5506040438253419,
|
2464 |
+
"learning_rate": 8.68458871201543e-05,
|
2465 |
+
"loss": 1.1733,
|
2466 |
+
"step": 351
|
2467 |
+
},
|
2468 |
+
{
|
2469 |
+
"epoch": 0.26,
|
2470 |
+
"grad_norm": 0.5339837805003954,
|
2471 |
+
"learning_rate": 8.676484934767409e-05,
|
2472 |
+
"loss": 1.1919,
|
2473 |
+
"step": 352
|
2474 |
+
},
|
2475 |
+
{
|
2476 |
+
"epoch": 0.26,
|
2477 |
+
"grad_norm": 0.5243053855032012,
|
2478 |
+
"learning_rate": 8.668360077808093e-05,
|
2479 |
+
"loss": 1.2637,
|
2480 |
+
"step": 353
|
2481 |
+
},
|
2482 |
+
{
|
2483 |
+
"epoch": 0.26,
|
2484 |
+
"grad_norm": 0.5475923045103417,
|
2485 |
+
"learning_rate": 8.660214187722646e-05,
|
2486 |
+
"loss": 1.2583,
|
2487 |
+
"step": 354
|
2488 |
+
},
|
2489 |
+
{
|
2490 |
+
"epoch": 0.26,
|
2491 |
+
"grad_norm": 0.5139607250185231,
|
2492 |
+
"learning_rate": 8.652047311216822e-05,
|
2493 |
+
"loss": 1.2939,
|
2494 |
+
"step": 355
|
2495 |
+
},
|
2496 |
+
{
|
2497 |
+
"epoch": 0.26,
|
2498 |
+
"grad_norm": 0.5310090229071474,
|
2499 |
+
"learning_rate": 8.64385949511671e-05,
|
2500 |
+
"loss": 1.2788,
|
2501 |
+
"step": 356
|
2502 |
+
},
|
2503 |
+
{
|
2504 |
+
"epoch": 0.26,
|
2505 |
+
"grad_norm": 0.5531120494965365,
|
2506 |
+
"learning_rate": 8.635650786368452e-05,
|
2507 |
+
"loss": 1.25,
|
2508 |
+
"step": 357
|
2509 |
+
},
|
2510 |
+
{
|
2511 |
+
"epoch": 0.26,
|
2512 |
+
"grad_norm": 0.5315969577054235,
|
2513 |
+
"learning_rate": 8.627421232037989e-05,
|
2514 |
+
"loss": 1.2357,
|
2515 |
+
"step": 358
|
2516 |
+
},
|
2517 |
+
{
|
2518 |
+
"epoch": 0.27,
|
2519 |
+
"grad_norm": 0.5266216921573422,
|
2520 |
+
"learning_rate": 8.619170879310779e-05,
|
2521 |
+
"loss": 1.2729,
|
2522 |
+
"step": 359
|
2523 |
+
},
|
2524 |
+
{
|
2525 |
+
"epoch": 0.27,
|
2526 |
+
"grad_norm": 0.5593055072800345,
|
2527 |
+
"learning_rate": 8.61089977549153e-05,
|
2528 |
+
"loss": 1.2529,
|
2529 |
+
"step": 360
|
2530 |
+
},
|
2531 |
+
{
|
2532 |
+
"epoch": 0.27,
|
2533 |
+
"grad_norm": 0.5596710951308123,
|
2534 |
+
"learning_rate": 8.602607968003935e-05,
|
2535 |
+
"loss": 1.2725,
|
2536 |
+
"step": 361
|
2537 |
+
},
|
2538 |
+
{
|
2539 |
+
"epoch": 0.27,
|
2540 |
+
"grad_norm": 0.5433552854623133,
|
2541 |
+
"learning_rate": 8.59429550439039e-05,
|
2542 |
+
"loss": 1.2446,
|
2543 |
+
"step": 362
|
2544 |
+
},
|
2545 |
+
{
|
2546 |
+
"epoch": 0.27,
|
2547 |
+
"grad_norm": 0.5818949631250041,
|
2548 |
+
"learning_rate": 8.585962432311727e-05,
|
2549 |
+
"loss": 1.2998,
|
2550 |
+
"step": 363
|
2551 |
+
},
|
2552 |
+
{
|
2553 |
+
"epoch": 0.27,
|
2554 |
+
"grad_norm": 0.514243535892493,
|
2555 |
+
"learning_rate": 8.577608799546942e-05,
|
2556 |
+
"loss": 1.23,
|
2557 |
+
"step": 364
|
2558 |
+
},
|
2559 |
+
{
|
2560 |
+
"epoch": 0.27,
|
2561 |
+
"grad_norm": 0.5465838481685172,
|
2562 |
+
"learning_rate": 8.569234653992916e-05,
|
2563 |
+
"loss": 1.2532,
|
2564 |
+
"step": 365
|
2565 |
+
},
|
2566 |
+
{
|
2567 |
+
"epoch": 0.27,
|
2568 |
+
"grad_norm": 0.519563471824199,
|
2569 |
+
"learning_rate": 8.560840043664144e-05,
|
2570 |
+
"loss": 1.2607,
|
2571 |
+
"step": 366
|
2572 |
+
},
|
2573 |
+
{
|
2574 |
+
"epoch": 0.27,
|
2575 |
+
"grad_norm": 0.5334398982863738,
|
2576 |
+
"learning_rate": 8.552425016692464e-05,
|
2577 |
+
"loss": 1.2363,
|
2578 |
+
"step": 367
|
2579 |
+
},
|
2580 |
+
{
|
2581 |
+
"epoch": 0.27,
|
2582 |
+
"grad_norm": 0.5530652812053678,
|
2583 |
+
"learning_rate": 8.543989621326768e-05,
|
2584 |
+
"loss": 1.2681,
|
2585 |
+
"step": 368
|
2586 |
+
},
|
2587 |
+
{
|
2588 |
+
"epoch": 0.27,
|
2589 |
+
"grad_norm": 0.5502954863671434,
|
2590 |
+
"learning_rate": 8.535533905932738e-05,
|
2591 |
+
"loss": 1.1721,
|
2592 |
+
"step": 369
|
2593 |
+
},
|
2594 |
+
{
|
2595 |
+
"epoch": 0.27,
|
2596 |
+
"grad_norm": 0.5180001078920966,
|
2597 |
+
"learning_rate": 8.527057918992565e-05,
|
2598 |
+
"loss": 1.2139,
|
2599 |
+
"step": 370
|
2600 |
+
},
|
2601 |
+
{
|
2602 |
+
"epoch": 0.27,
|
2603 |
+
"grad_norm": 0.5333180911534254,
|
2604 |
+
"learning_rate": 8.518561709104667e-05,
|
2605 |
+
"loss": 1.2461,
|
2606 |
+
"step": 371
|
2607 |
+
},
|
2608 |
+
{
|
2609 |
+
"epoch": 0.27,
|
2610 |
+
"grad_norm": 0.5479350107655593,
|
2611 |
+
"learning_rate": 8.510045324983417e-05,
|
2612 |
+
"loss": 1.2512,
|
2613 |
+
"step": 372
|
2614 |
+
},
|
2615 |
+
{
|
2616 |
+
"epoch": 0.28,
|
2617 |
+
"grad_norm": 0.5246093324411485,
|
2618 |
+
"learning_rate": 8.501508815458855e-05,
|
2619 |
+
"loss": 1.1787,
|
2620 |
+
"step": 373
|
2621 |
+
},
|
2622 |
+
{
|
2623 |
+
"epoch": 0.28,
|
2624 |
+
"grad_norm": 0.50033135264865,
|
2625 |
+
"learning_rate": 8.492952229476421e-05,
|
2626 |
+
"loss": 1.2271,
|
2627 |
+
"step": 374
|
2628 |
+
},
|
2629 |
+
{
|
2630 |
+
"epoch": 0.28,
|
2631 |
+
"grad_norm": 0.5418162221365314,
|
2632 |
+
"learning_rate": 8.484375616096658e-05,
|
2633 |
+
"loss": 1.2383,
|
2634 |
+
"step": 375
|
2635 |
+
},
|
2636 |
+
{
|
2637 |
+
"epoch": 0.28,
|
2638 |
+
"grad_norm": 0.516783670359288,
|
2639 |
+
"learning_rate": 8.475779024494945e-05,
|
2640 |
+
"loss": 1.2681,
|
2641 |
+
"step": 376
|
2642 |
+
},
|
2643 |
+
{
|
2644 |
+
"epoch": 0.28,
|
2645 |
+
"grad_norm": 0.5298750460233759,
|
2646 |
+
"learning_rate": 8.467162503961208e-05,
|
2647 |
+
"loss": 1.2451,
|
2648 |
+
"step": 377
|
2649 |
+
},
|
2650 |
+
{
|
2651 |
+
"epoch": 0.28,
|
2652 |
+
"grad_norm": 0.5149476400550106,
|
2653 |
+
"learning_rate": 8.45852610389964e-05,
|
2654 |
+
"loss": 1.23,
|
2655 |
+
"step": 378
|
2656 |
+
},
|
2657 |
+
{
|
2658 |
+
"epoch": 0.28,
|
2659 |
+
"grad_norm": 0.5268563601419046,
|
2660 |
+
"learning_rate": 8.449869873828411e-05,
|
2661 |
+
"loss": 1.2129,
|
2662 |
+
"step": 379
|
2663 |
+
},
|
2664 |
+
{
|
2665 |
+
"epoch": 0.28,
|
2666 |
+
"grad_norm": 0.5357435202461692,
|
2667 |
+
"learning_rate": 8.441193863379396e-05,
|
2668 |
+
"loss": 1.2881,
|
2669 |
+
"step": 380
|
2670 |
+
},
|
2671 |
+
{
|
2672 |
+
"epoch": 0.28,
|
2673 |
+
"grad_norm": 0.5407114377511073,
|
2674 |
+
"learning_rate": 8.432498122297878e-05,
|
2675 |
+
"loss": 1.2559,
|
2676 |
+
"step": 381
|
2677 |
+
},
|
2678 |
+
{
|
2679 |
+
"epoch": 0.28,
|
2680 |
+
"grad_norm": 0.5376253272809564,
|
2681 |
+
"learning_rate": 8.423782700442277e-05,
|
2682 |
+
"loss": 1.2346,
|
2683 |
+
"step": 382
|
2684 |
+
},
|
2685 |
+
{
|
2686 |
+
"epoch": 0.28,
|
2687 |
+
"grad_norm": 0.5378153063595059,
|
2688 |
+
"learning_rate": 8.415047647783847e-05,
|
2689 |
+
"loss": 1.2031,
|
2690 |
+
"step": 383
|
2691 |
+
},
|
2692 |
+
{
|
2693 |
+
"epoch": 0.28,
|
2694 |
+
"grad_norm": 0.514779002563088,
|
2695 |
+
"learning_rate": 8.406293014406403e-05,
|
2696 |
+
"loss": 1.2056,
|
2697 |
+
"step": 384
|
2698 |
+
},
|
2699 |
+
{
|
2700 |
+
"epoch": 0.28,
|
2701 |
+
"grad_norm": 0.5659231392943161,
|
2702 |
+
"learning_rate": 8.397518850506028e-05,
|
2703 |
+
"loss": 1.2346,
|
2704 |
+
"step": 385
|
2705 |
+
},
|
2706 |
+
{
|
2707 |
+
"epoch": 0.29,
|
2708 |
+
"grad_norm": 0.5483974446090379,
|
2709 |
+
"learning_rate": 8.388725206390788e-05,
|
2710 |
+
"loss": 1.2974,
|
2711 |
+
"step": 386
|
2712 |
+
},
|
2713 |
+
{
|
2714 |
+
"epoch": 0.29,
|
2715 |
+
"grad_norm": 0.5297423113703096,
|
2716 |
+
"learning_rate": 8.379912132480441e-05,
|
2717 |
+
"loss": 1.2427,
|
2718 |
+
"step": 387
|
2719 |
+
},
|
2720 |
+
{
|
2721 |
+
"epoch": 0.29,
|
2722 |
+
"grad_norm": 0.5339239833592698,
|
2723 |
+
"learning_rate": 8.371079679306146e-05,
|
2724 |
+
"loss": 1.2788,
|
2725 |
+
"step": 388
|
2726 |
+
},
|
2727 |
+
{
|
2728 |
+
"epoch": 0.29,
|
2729 |
+
"grad_norm": 0.5346762752364651,
|
2730 |
+
"learning_rate": 8.36222789751018e-05,
|
2731 |
+
"loss": 1.2329,
|
2732 |
+
"step": 389
|
2733 |
+
},
|
2734 |
+
{
|
2735 |
+
"epoch": 0.29,
|
2736 |
+
"grad_norm": 0.5267945253503268,
|
2737 |
+
"learning_rate": 8.353356837845642e-05,
|
2738 |
+
"loss": 1.3101,
|
2739 |
+
"step": 390
|
2740 |
+
},
|
2741 |
+
{
|
2742 |
+
"epoch": 0.29,
|
2743 |
+
"grad_norm": 0.5227678407329124,
|
2744 |
+
"learning_rate": 8.344466551176164e-05,
|
2745 |
+
"loss": 1.2544,
|
2746 |
+
"step": 391
|
2747 |
+
},
|
2748 |
+
{
|
2749 |
+
"epoch": 0.29,
|
2750 |
+
"grad_norm": 0.5351886972585579,
|
2751 |
+
"learning_rate": 8.335557088475618e-05,
|
2752 |
+
"loss": 1.2036,
|
2753 |
+
"step": 392
|
2754 |
+
},
|
2755 |
+
{
|
2756 |
+
"epoch": 0.29,
|
2757 |
+
"grad_norm": 0.547855768363372,
|
2758 |
+
"learning_rate": 8.326628500827826e-05,
|
2759 |
+
"loss": 1.2256,
|
2760 |
+
"step": 393
|
2761 |
+
},
|
2762 |
+
{
|
2763 |
+
"epoch": 0.29,
|
2764 |
+
"grad_norm": 0.5232912428703006,
|
2765 |
+
"learning_rate": 8.31768083942627e-05,
|
2766 |
+
"loss": 1.2524,
|
2767 |
+
"step": 394
|
2768 |
+
},
|
2769 |
+
{
|
2770 |
+
"epoch": 0.29,
|
2771 |
+
"grad_norm": 0.5355407135538937,
|
2772 |
+
"learning_rate": 8.308714155573785e-05,
|
2773 |
+
"loss": 1.1904,
|
2774 |
+
"step": 395
|
2775 |
+
},
|
2776 |
+
{
|
2777 |
+
"epoch": 0.29,
|
2778 |
+
"grad_norm": 0.5398818834520477,
|
2779 |
+
"learning_rate": 8.29972850068228e-05,
|
2780 |
+
"loss": 1.2544,
|
2781 |
+
"step": 396
|
2782 |
+
},
|
2783 |
+
{
|
2784 |
+
"epoch": 0.29,
|
2785 |
+
"grad_norm": 0.5365767973671521,
|
2786 |
+
"learning_rate": 8.290723926272439e-05,
|
2787 |
+
"loss": 1.2378,
|
2788 |
+
"step": 397
|
2789 |
+
},
|
2790 |
+
{
|
2791 |
+
"epoch": 0.29,
|
2792 |
+
"grad_norm": 0.5505960932890972,
|
2793 |
+
"learning_rate": 8.281700483973421e-05,
|
2794 |
+
"loss": 1.2471,
|
2795 |
+
"step": 398
|
2796 |
+
},
|
2797 |
+
{
|
2798 |
+
"epoch": 0.29,
|
2799 |
+
"grad_norm": 0.5479428166637395,
|
2800 |
+
"learning_rate": 8.272658225522569e-05,
|
2801 |
+
"loss": 1.2607,
|
2802 |
+
"step": 399
|
2803 |
+
},
|
2804 |
+
{
|
2805 |
+
"epoch": 0.3,
|
2806 |
+
"grad_norm": 0.5764125413085645,
|
2807 |
+
"learning_rate": 8.263597202765109e-05,
|
2808 |
+
"loss": 1.2888,
|
2809 |
+
"step": 400
|
2810 |
+
},
|
2811 |
+
{
|
2812 |
+
"epoch": 0.3,
|
2813 |
+
"grad_norm": 0.5193462362673806,
|
2814 |
+
"learning_rate": 8.254517467653858e-05,
|
2815 |
+
"loss": 1.1882,
|
2816 |
+
"step": 401
|
2817 |
+
},
|
2818 |
+
{
|
2819 |
+
"epoch": 0.3,
|
2820 |
+
"grad_norm": 0.5374168368793678,
|
2821 |
+
"learning_rate": 8.245419072248919e-05,
|
2822 |
+
"loss": 1.2358,
|
2823 |
+
"step": 402
|
2824 |
+
},
|
2825 |
+
{
|
2826 |
+
"epoch": 0.3,
|
2827 |
+
"grad_norm": 0.5560345573494497,
|
2828 |
+
"learning_rate": 8.236302068717392e-05,
|
2829 |
+
"loss": 1.3,
|
2830 |
+
"step": 403
|
2831 |
+
},
|
2832 |
+
{
|
2833 |
+
"epoch": 0.3,
|
2834 |
+
"grad_norm": 0.5223138605512301,
|
2835 |
+
"learning_rate": 8.227166509333068e-05,
|
2836 |
+
"loss": 1.2559,
|
2837 |
+
"step": 404
|
2838 |
+
},
|
2839 |
+
{
|
2840 |
+
"epoch": 0.3,
|
2841 |
+
"grad_norm": 0.5009208364979428,
|
2842 |
+
"learning_rate": 8.218012446476128e-05,
|
2843 |
+
"loss": 1.2617,
|
2844 |
+
"step": 405
|
2845 |
+
},
|
2846 |
+
{
|
2847 |
+
"epoch": 0.3,
|
2848 |
+
"grad_norm": 0.509867725986647,
|
2849 |
+
"learning_rate": 8.208839932632849e-05,
|
2850 |
+
"loss": 1.2715,
|
2851 |
+
"step": 406
|
2852 |
+
},
|
2853 |
+
{
|
2854 |
+
"epoch": 0.3,
|
2855 |
+
"grad_norm": 0.5190782935920448,
|
2856 |
+
"learning_rate": 8.199649020395298e-05,
|
2857 |
+
"loss": 1.2183,
|
2858 |
+
"step": 407
|
2859 |
+
},
|
2860 |
+
{
|
2861 |
+
"epoch": 0.3,
|
2862 |
+
"grad_norm": 0.551317848502644,
|
2863 |
+
"learning_rate": 8.190439762461033e-05,
|
2864 |
+
"loss": 1.2241,
|
2865 |
+
"step": 408
|
2866 |
+
},
|
2867 |
+
{
|
2868 |
+
"epoch": 0.3,
|
2869 |
+
"grad_norm": 0.5299140869699253,
|
2870 |
+
"learning_rate": 8.181212211632799e-05,
|
2871 |
+
"loss": 1.1746,
|
2872 |
+
"step": 409
|
2873 |
+
},
|
2874 |
+
{
|
2875 |
+
"epoch": 0.3,
|
2876 |
+
"grad_norm": 0.5161200175965883,
|
2877 |
+
"learning_rate": 8.171966420818228e-05,
|
2878 |
+
"loss": 1.2544,
|
2879 |
+
"step": 410
|
2880 |
+
},
|
2881 |
+
{
|
2882 |
+
"epoch": 0.3,
|
2883 |
+
"grad_norm": 0.5368310977870265,
|
2884 |
+
"learning_rate": 8.162702443029531e-05,
|
2885 |
+
"loss": 1.2505,
|
2886 |
+
"step": 411
|
2887 |
+
},
|
2888 |
+
{
|
2889 |
+
"epoch": 0.3,
|
2890 |
+
"grad_norm": 0.5392135585371384,
|
2891 |
+
"learning_rate": 8.153420331383199e-05,
|
2892 |
+
"loss": 1.2378,
|
2893 |
+
"step": 412
|
2894 |
+
},
|
2895 |
+
{
|
2896 |
+
"epoch": 0.31,
|
2897 |
+
"grad_norm": 0.5652426070182841,
|
2898 |
+
"learning_rate": 8.144120139099697e-05,
|
2899 |
+
"loss": 1.2788,
|
2900 |
+
"step": 413
|
2901 |
+
},
|
2902 |
+
{
|
2903 |
+
"epoch": 0.31,
|
2904 |
+
"grad_norm": 0.5264883521440279,
|
2905 |
+
"learning_rate": 8.134801919503154e-05,
|
2906 |
+
"loss": 1.2432,
|
2907 |
+
"step": 414
|
2908 |
+
},
|
2909 |
+
{
|
2910 |
+
"epoch": 0.31,
|
2911 |
+
"grad_norm": 0.5391198787958846,
|
2912 |
+
"learning_rate": 8.125465726021069e-05,
|
2913 |
+
"loss": 1.2642,
|
2914 |
+
"step": 415
|
2915 |
+
},
|
2916 |
+
{
|
2917 |
+
"epoch": 0.31,
|
2918 |
+
"grad_norm": 0.5447234901673647,
|
2919 |
+
"learning_rate": 8.116111612183989e-05,
|
2920 |
+
"loss": 1.2598,
|
2921 |
+
"step": 416
|
2922 |
+
},
|
2923 |
+
{
|
2924 |
+
"epoch": 0.31,
|
2925 |
+
"grad_norm": 0.5239448356746366,
|
2926 |
+
"learning_rate": 8.106739631625217e-05,
|
2927 |
+
"loss": 1.2383,
|
2928 |
+
"step": 417
|
2929 |
+
},
|
2930 |
+
{
|
2931 |
+
"epoch": 0.31,
|
2932 |
+
"grad_norm": 0.522466994953917,
|
2933 |
+
"learning_rate": 8.09734983808049e-05,
|
2934 |
+
"loss": 1.21,
|
2935 |
+
"step": 418
|
2936 |
+
},
|
2937 |
+
{
|
2938 |
+
"epoch": 0.31,
|
2939 |
+
"grad_norm": 0.49320728726020635,
|
2940 |
+
"learning_rate": 8.087942285387688e-05,
|
2941 |
+
"loss": 1.1643,
|
2942 |
+
"step": 419
|
2943 |
+
},
|
2944 |
+
{
|
2945 |
+
"epoch": 0.31,
|
2946 |
+
"grad_norm": 0.538615135680076,
|
2947 |
+
"learning_rate": 8.07851702748651e-05,
|
2948 |
+
"loss": 1.2485,
|
2949 |
+
"step": 420
|
2950 |
+
},
|
2951 |
+
{
|
2952 |
+
"epoch": 0.31,
|
2953 |
+
"grad_norm": 0.5546864636999657,
|
2954 |
+
"learning_rate": 8.06907411841817e-05,
|
2955 |
+
"loss": 1.1887,
|
2956 |
+
"step": 421
|
2957 |
+
},
|
2958 |
+
{
|
2959 |
+
"epoch": 0.31,
|
2960 |
+
"grad_norm": 0.5337150121699967,
|
2961 |
+
"learning_rate": 8.05961361232509e-05,
|
2962 |
+
"loss": 1.2378,
|
2963 |
+
"step": 422
|
2964 |
+
},
|
2965 |
+
{
|
2966 |
+
"epoch": 0.31,
|
2967 |
+
"grad_norm": 0.5548120199862732,
|
2968 |
+
"learning_rate": 8.050135563450587e-05,
|
2969 |
+
"loss": 1.2129,
|
2970 |
+
"step": 423
|
2971 |
+
},
|
2972 |
+
{
|
2973 |
+
"epoch": 0.31,
|
2974 |
+
"grad_norm": 0.5491477319207145,
|
2975 |
+
"learning_rate": 8.040640026138562e-05,
|
2976 |
+
"loss": 1.2615,
|
2977 |
+
"step": 424
|
2978 |
+
},
|
2979 |
+
{
|
2980 |
+
"epoch": 0.31,
|
2981 |
+
"grad_norm": 0.5292609791678348,
|
2982 |
+
"learning_rate": 8.03112705483319e-05,
|
2983 |
+
"loss": 1.1963,
|
2984 |
+
"step": 425
|
2985 |
+
},
|
2986 |
+
{
|
2987 |
+
"epoch": 0.31,
|
2988 |
+
"grad_norm": 0.5386073890465884,
|
2989 |
+
"learning_rate": 8.021596704078605e-05,
|
2990 |
+
"loss": 1.2822,
|
2991 |
+
"step": 426
|
2992 |
+
},
|
2993 |
+
{
|
2994 |
+
"epoch": 0.32,
|
2995 |
+
"grad_norm": 0.5208877771953219,
|
2996 |
+
"learning_rate": 8.012049028518589e-05,
|
2997 |
+
"loss": 1.2468,
|
2998 |
+
"step": 427
|
2999 |
+
},
|
3000 |
+
{
|
3001 |
+
"epoch": 0.32,
|
3002 |
+
"grad_norm": 0.5300893442105213,
|
3003 |
+
"learning_rate": 8.002484082896257e-05,
|
3004 |
+
"loss": 1.2141,
|
3005 |
+
"step": 428
|
3006 |
+
},
|
3007 |
+
{
|
3008 |
+
"epoch": 0.32,
|
3009 |
+
"grad_norm": 0.5426660622332912,
|
3010 |
+
"learning_rate": 7.992901922053752e-05,
|
3011 |
+
"loss": 1.2083,
|
3012 |
+
"step": 429
|
3013 |
+
},
|
3014 |
+
{
|
3015 |
+
"epoch": 0.32,
|
3016 |
+
"grad_norm": 0.5280778314237736,
|
3017 |
+
"learning_rate": 7.983302600931911e-05,
|
3018 |
+
"loss": 1.2556,
|
3019 |
+
"step": 430
|
3020 |
+
},
|
3021 |
+
{
|
3022 |
+
"epoch": 0.32,
|
3023 |
+
"grad_norm": 0.5303015472910759,
|
3024 |
+
"learning_rate": 7.973686174569972e-05,
|
3025 |
+
"loss": 1.2246,
|
3026 |
+
"step": 431
|
3027 |
+
},
|
3028 |
+
{
|
3029 |
+
"epoch": 0.32,
|
3030 |
+
"grad_norm": 0.5385117857553907,
|
3031 |
+
"learning_rate": 7.964052698105247e-05,
|
3032 |
+
"loss": 1.2544,
|
3033 |
+
"step": 432
|
3034 |
+
},
|
3035 |
+
{
|
3036 |
+
"epoch": 0.32,
|
3037 |
+
"grad_norm": 0.5175160927509813,
|
3038 |
+
"learning_rate": 7.954402226772804e-05,
|
3039 |
+
"loss": 1.1724,
|
3040 |
+
"step": 433
|
3041 |
+
},
|
3042 |
+
{
|
3043 |
+
"epoch": 0.32,
|
3044 |
+
"grad_norm": 0.5167307050244405,
|
3045 |
+
"learning_rate": 7.944734815905154e-05,
|
3046 |
+
"loss": 1.228,
|
3047 |
+
"step": 434
|
3048 |
+
},
|
3049 |
+
{
|
3050 |
+
"epoch": 0.32,
|
3051 |
+
"grad_norm": 0.533666702216578,
|
3052 |
+
"learning_rate": 7.93505052093194e-05,
|
3053 |
+
"loss": 1.2349,
|
3054 |
+
"step": 435
|
3055 |
+
},
|
3056 |
+
{
|
3057 |
+
"epoch": 0.32,
|
3058 |
+
"grad_norm": 0.5259498652131873,
|
3059 |
+
"learning_rate": 7.925349397379604e-05,
|
3060 |
+
"loss": 1.2415,
|
3061 |
+
"step": 436
|
3062 |
+
},
|
3063 |
+
{
|
3064 |
+
"epoch": 0.32,
|
3065 |
+
"grad_norm": 0.5445977576017799,
|
3066 |
+
"learning_rate": 7.915631500871083e-05,
|
3067 |
+
"loss": 1.2065,
|
3068 |
+
"step": 437
|
3069 |
+
},
|
3070 |
+
{
|
3071 |
+
"epoch": 0.32,
|
3072 |
+
"grad_norm": 0.5649990455410109,
|
3073 |
+
"learning_rate": 7.905896887125482e-05,
|
3074 |
+
"loss": 1.2417,
|
3075 |
+
"step": 438
|
3076 |
+
},
|
3077 |
+
{
|
3078 |
+
"epoch": 0.32,
|
3079 |
+
"grad_norm": 0.5260513948557283,
|
3080 |
+
"learning_rate": 7.896145611957759e-05,
|
3081 |
+
"loss": 1.1918,
|
3082 |
+
"step": 439
|
3083 |
+
},
|
3084 |
+
{
|
3085 |
+
"epoch": 0.33,
|
3086 |
+
"grad_norm": 0.5258410063287358,
|
3087 |
+
"learning_rate": 7.8863777312784e-05,
|
3088 |
+
"loss": 1.2124,
|
3089 |
+
"step": 440
|
3090 |
+
},
|
3091 |
+
{
|
3092 |
+
"epoch": 0.33,
|
3093 |
+
"grad_norm": 0.5434644442116746,
|
3094 |
+
"learning_rate": 7.876593301093104e-05,
|
3095 |
+
"loss": 1.2349,
|
3096 |
+
"step": 441
|
3097 |
+
},
|
3098 |
+
{
|
3099 |
+
"epoch": 0.33,
|
3100 |
+
"grad_norm": 0.5462561748612222,
|
3101 |
+
"learning_rate": 7.866792377502457e-05,
|
3102 |
+
"loss": 1.2373,
|
3103 |
+
"step": 442
|
3104 |
+
},
|
3105 |
+
{
|
3106 |
+
"epoch": 0.33,
|
3107 |
+
"grad_norm": 0.5661256454549024,
|
3108 |
+
"learning_rate": 7.856975016701615e-05,
|
3109 |
+
"loss": 1.2334,
|
3110 |
+
"step": 443
|
3111 |
+
},
|
3112 |
+
{
|
3113 |
+
"epoch": 0.33,
|
3114 |
+
"grad_norm": 0.5517524055311237,
|
3115 |
+
"learning_rate": 7.847141274979977e-05,
|
3116 |
+
"loss": 1.2549,
|
3117 |
+
"step": 444
|
3118 |
+
},
|
3119 |
+
{
|
3120 |
+
"epoch": 0.33,
|
3121 |
+
"grad_norm": 0.5588533911643465,
|
3122 |
+
"learning_rate": 7.837291208720866e-05,
|
3123 |
+
"loss": 1.248,
|
3124 |
+
"step": 445
|
3125 |
+
},
|
3126 |
+
{
|
3127 |
+
"epoch": 0.33,
|
3128 |
+
"grad_norm": 0.5432341108696274,
|
3129 |
+
"learning_rate": 7.827424874401203e-05,
|
3130 |
+
"loss": 1.207,
|
3131 |
+
"step": 446
|
3132 |
+
},
|
3133 |
+
{
|
3134 |
+
"epoch": 0.33,
|
3135 |
+
"grad_norm": 0.5185655878803792,
|
3136 |
+
"learning_rate": 7.81754232859119e-05,
|
3137 |
+
"loss": 1.2087,
|
3138 |
+
"step": 447
|
3139 |
+
},
|
3140 |
+
{
|
3141 |
+
"epoch": 0.33,
|
3142 |
+
"grad_norm": 0.546989000271988,
|
3143 |
+
"learning_rate": 7.807643627953969e-05,
|
3144 |
+
"loss": 1.2852,
|
3145 |
+
"step": 448
|
3146 |
+
},
|
3147 |
+
{
|
3148 |
+
"epoch": 0.33,
|
3149 |
+
"grad_norm": 0.5609807732483688,
|
3150 |
+
"learning_rate": 7.797728829245321e-05,
|
3151 |
+
"loss": 1.23,
|
3152 |
+
"step": 449
|
3153 |
+
},
|
3154 |
+
{
|
3155 |
+
"epoch": 0.33,
|
3156 |
+
"grad_norm": 0.5290536891546959,
|
3157 |
+
"learning_rate": 7.787797989313317e-05,
|
3158 |
+
"loss": 1.1687,
|
3159 |
+
"step": 450
|
3160 |
+
},
|
3161 |
+
{
|
3162 |
+
"epoch": 0.33,
|
3163 |
+
"grad_norm": 0.527486366572943,
|
3164 |
+
"learning_rate": 7.777851165098012e-05,
|
3165 |
+
"loss": 1.2349,
|
3166 |
+
"step": 451
|
3167 |
+
},
|
3168 |
+
{
|
3169 |
+
"epoch": 0.33,
|
3170 |
+
"grad_norm": 0.5444668761845415,
|
3171 |
+
"learning_rate": 7.767888413631101e-05,
|
3172 |
+
"loss": 1.248,
|
3173 |
+
"step": 452
|
3174 |
+
},
|
3175 |
+
{
|
3176 |
+
"epoch": 0.33,
|
3177 |
+
"grad_norm": 0.5194113505588946,
|
3178 |
+
"learning_rate": 7.757909792035608e-05,
|
3179 |
+
"loss": 1.3081,
|
3180 |
+
"step": 453
|
3181 |
+
},
|
3182 |
+
{
|
3183 |
+
"epoch": 0.34,
|
3184 |
+
"grad_norm": 0.5174613130879753,
|
3185 |
+
"learning_rate": 7.747915357525545e-05,
|
3186 |
+
"loss": 1.2046,
|
3187 |
+
"step": 454
|
3188 |
+
},
|
3189 |
+
{
|
3190 |
+
"epoch": 0.34,
|
3191 |
+
"grad_norm": 0.5535670191712191,
|
3192 |
+
"learning_rate": 7.737905167405595e-05,
|
3193 |
+
"loss": 1.2136,
|
3194 |
+
"step": 455
|
3195 |
+
},
|
3196 |
+
{
|
3197 |
+
"epoch": 0.34,
|
3198 |
+
"grad_norm": 0.546209627520353,
|
3199 |
+
"learning_rate": 7.727879279070773e-05,
|
3200 |
+
"loss": 1.2097,
|
3201 |
+
"step": 456
|
3202 |
+
},
|
3203 |
+
{
|
3204 |
+
"epoch": 0.34,
|
3205 |
+
"grad_norm": 0.5221397456131871,
|
3206 |
+
"learning_rate": 7.717837750006106e-05,
|
3207 |
+
"loss": 1.2832,
|
3208 |
+
"step": 457
|
3209 |
+
},
|
3210 |
+
{
|
3211 |
+
"epoch": 0.34,
|
3212 |
+
"grad_norm": 0.5380906003507856,
|
3213 |
+
"learning_rate": 7.7077806377863e-05,
|
3214 |
+
"loss": 1.1807,
|
3215 |
+
"step": 458
|
3216 |
+
},
|
3217 |
+
{
|
3218 |
+
"epoch": 0.34,
|
3219 |
+
"grad_norm": 0.546159089637007,
|
3220 |
+
"learning_rate": 7.697708000075403e-05,
|
3221 |
+
"loss": 1.262,
|
3222 |
+
"step": 459
|
3223 |
+
},
|
3224 |
+
{
|
3225 |
+
"epoch": 0.34,
|
3226 |
+
"grad_norm": 0.5378903447286532,
|
3227 |
+
"learning_rate": 7.687619894626493e-05,
|
3228 |
+
"loss": 1.2639,
|
3229 |
+
"step": 460
|
3230 |
+
},
|
3231 |
+
{
|
3232 |
+
"epoch": 0.34,
|
3233 |
+
"grad_norm": 0.5183593724417229,
|
3234 |
+
"learning_rate": 7.677516379281321e-05,
|
3235 |
+
"loss": 1.2344,
|
3236 |
+
"step": 461
|
3237 |
+
},
|
3238 |
+
{
|
3239 |
+
"epoch": 0.34,
|
3240 |
+
"grad_norm": 0.5110004203240966,
|
3241 |
+
"learning_rate": 7.667397511970005e-05,
|
3242 |
+
"loss": 1.2144,
|
3243 |
+
"step": 462
|
3244 |
+
},
|
3245 |
+
{
|
3246 |
+
"epoch": 0.34,
|
3247 |
+
"grad_norm": 0.5237401648978784,
|
3248 |
+
"learning_rate": 7.657263350710676e-05,
|
3249 |
+
"loss": 1.1992,
|
3250 |
+
"step": 463
|
3251 |
+
},
|
3252 |
+
{
|
3253 |
+
"epoch": 0.34,
|
3254 |
+
"grad_norm": 0.5458624581753624,
|
3255 |
+
"learning_rate": 7.647113953609163e-05,
|
3256 |
+
"loss": 1.252,
|
3257 |
+
"step": 464
|
3258 |
+
},
|
3259 |
+
{
|
3260 |
+
"epoch": 0.34,
|
3261 |
+
"grad_norm": 0.55612272064723,
|
3262 |
+
"learning_rate": 7.636949378858646e-05,
|
3263 |
+
"loss": 1.188,
|
3264 |
+
"step": 465
|
3265 |
+
},
|
3266 |
+
{
|
3267 |
+
"epoch": 0.34,
|
3268 |
+
"grad_norm": 0.5578526299155908,
|
3269 |
+
"learning_rate": 7.626769684739337e-05,
|
3270 |
+
"loss": 1.1951,
|
3271 |
+
"step": 466
|
3272 |
+
},
|
3273 |
+
{
|
3274 |
+
"epoch": 0.35,
|
3275 |
+
"grad_norm": 0.5092511020982519,
|
3276 |
+
"learning_rate": 7.616574929618125e-05,
|
3277 |
+
"loss": 1.1543,
|
3278 |
+
"step": 467
|
3279 |
+
},
|
3280 |
+
{
|
3281 |
+
"epoch": 0.35,
|
3282 |
+
"grad_norm": 0.5348616024567703,
|
3283 |
+
"learning_rate": 7.606365171948267e-05,
|
3284 |
+
"loss": 1.2368,
|
3285 |
+
"step": 468
|
3286 |
+
},
|
3287 |
+
{
|
3288 |
+
"epoch": 0.35,
|
3289 |
+
"grad_norm": 0.532298079012496,
|
3290 |
+
"learning_rate": 7.596140470269029e-05,
|
3291 |
+
"loss": 1.2107,
|
3292 |
+
"step": 469
|
3293 |
+
},
|
3294 |
+
{
|
3295 |
+
"epoch": 0.35,
|
3296 |
+
"grad_norm": 0.5514395726265122,
|
3297 |
+
"learning_rate": 7.585900883205364e-05,
|
3298 |
+
"loss": 1.241,
|
3299 |
+
"step": 470
|
3300 |
+
},
|
3301 |
+
{
|
3302 |
+
"epoch": 0.35,
|
3303 |
+
"grad_norm": 0.5539874834294591,
|
3304 |
+
"learning_rate": 7.575646469467575e-05,
|
3305 |
+
"loss": 1.2249,
|
3306 |
+
"step": 471
|
3307 |
+
},
|
3308 |
+
{
|
3309 |
+
"epoch": 0.35,
|
3310 |
+
"grad_norm": 0.5141238427544136,
|
3311 |
+
"learning_rate": 7.565377287850977e-05,
|
3312 |
+
"loss": 1.21,
|
3313 |
+
"step": 472
|
3314 |
+
},
|
3315 |
+
{
|
3316 |
+
"epoch": 0.35,
|
3317 |
+
"grad_norm": 0.526119772429715,
|
3318 |
+
"learning_rate": 7.555093397235552e-05,
|
3319 |
+
"loss": 1.2141,
|
3320 |
+
"step": 473
|
3321 |
+
},
|
3322 |
+
{
|
3323 |
+
"epoch": 0.35,
|
3324 |
+
"grad_norm": 0.5239544155150679,
|
3325 |
+
"learning_rate": 7.544794856585626e-05,
|
3326 |
+
"loss": 1.2446,
|
3327 |
+
"step": 474
|
3328 |
+
},
|
3329 |
+
{
|
3330 |
+
"epoch": 0.35,
|
3331 |
+
"grad_norm": 0.5116743183638587,
|
3332 |
+
"learning_rate": 7.53448172494952e-05,
|
3333 |
+
"loss": 1.2251,
|
3334 |
+
"step": 475
|
3335 |
+
},
|
3336 |
+
{
|
3337 |
+
"epoch": 0.35,
|
3338 |
+
"grad_norm": 0.5465278452905271,
|
3339 |
+
"learning_rate": 7.524154061459215e-05,
|
3340 |
+
"loss": 1.1744,
|
3341 |
+
"step": 476
|
3342 |
+
},
|
3343 |
+
{
|
3344 |
+
"epoch": 0.35,
|
3345 |
+
"grad_norm": 0.5242898434746838,
|
3346 |
+
"learning_rate": 7.51381192533001e-05,
|
3347 |
+
"loss": 1.2305,
|
3348 |
+
"step": 477
|
3349 |
+
},
|
3350 |
+
{
|
3351 |
+
"epoch": 0.35,
|
3352 |
+
"grad_norm": 0.5524906450650563,
|
3353 |
+
"learning_rate": 7.503455375860192e-05,
|
3354 |
+
"loss": 1.271,
|
3355 |
+
"step": 478
|
3356 |
+
},
|
3357 |
+
{
|
3358 |
+
"epoch": 0.35,
|
3359 |
+
"grad_norm": 0.5422094091125237,
|
3360 |
+
"learning_rate": 7.493084472430682e-05,
|
3361 |
+
"loss": 1.2983,
|
3362 |
+
"step": 479
|
3363 |
+
},
|
3364 |
+
{
|
3365 |
+
"epoch": 0.35,
|
3366 |
+
"grad_norm": 0.5100606069460412,
|
3367 |
+
"learning_rate": 7.482699274504708e-05,
|
3368 |
+
"loss": 1.1914,
|
3369 |
+
"step": 480
|
3370 |
+
},
|
3371 |
+
{
|
3372 |
+
"epoch": 0.36,
|
3373 |
+
"grad_norm": 0.5258246755815246,
|
3374 |
+
"learning_rate": 7.472299841627451e-05,
|
3375 |
+
"loss": 1.1948,
|
3376 |
+
"step": 481
|
3377 |
+
},
|
3378 |
+
{
|
3379 |
+
"epoch": 0.36,
|
3380 |
+
"grad_norm": 0.5183104456102203,
|
3381 |
+
"learning_rate": 7.461886233425717e-05,
|
3382 |
+
"loss": 1.1658,
|
3383 |
+
"step": 482
|
3384 |
+
},
|
3385 |
+
{
|
3386 |
+
"epoch": 0.36,
|
3387 |
+
"grad_norm": 0.5283305385961874,
|
3388 |
+
"learning_rate": 7.451458509607582e-05,
|
3389 |
+
"loss": 1.2378,
|
3390 |
+
"step": 483
|
3391 |
+
},
|
3392 |
+
{
|
3393 |
+
"epoch": 0.36,
|
3394 |
+
"grad_norm": 0.5552677702446687,
|
3395 |
+
"learning_rate": 7.441016729962064e-05,
|
3396 |
+
"loss": 1.1938,
|
3397 |
+
"step": 484
|
3398 |
+
},
|
3399 |
+
{
|
3400 |
+
"epoch": 0.36,
|
3401 |
+
"grad_norm": 0.5198625616185957,
|
3402 |
+
"learning_rate": 7.430560954358764e-05,
|
3403 |
+
"loss": 1.2515,
|
3404 |
+
"step": 485
|
3405 |
+
},
|
3406 |
+
{
|
3407 |
+
"epoch": 0.36,
|
3408 |
+
"grad_norm": 0.524907115545136,
|
3409 |
+
"learning_rate": 7.420091242747536e-05,
|
3410 |
+
"loss": 1.2437,
|
3411 |
+
"step": 486
|
3412 |
+
},
|
3413 |
+
{
|
3414 |
+
"epoch": 0.36,
|
3415 |
+
"grad_norm": 0.520819742542826,
|
3416 |
+
"learning_rate": 7.409607655158139e-05,
|
3417 |
+
"loss": 1.2764,
|
3418 |
+
"step": 487
|
3419 |
+
},
|
3420 |
+
{
|
3421 |
+
"epoch": 0.36,
|
3422 |
+
"grad_norm": 0.5297968503831433,
|
3423 |
+
"learning_rate": 7.399110251699887e-05,
|
3424 |
+
"loss": 1.2529,
|
3425 |
+
"step": 488
|
3426 |
+
},
|
3427 |
+
{
|
3428 |
+
"epoch": 0.36,
|
3429 |
+
"grad_norm": 0.5214545833543685,
|
3430 |
+
"learning_rate": 7.388599092561315e-05,
|
3431 |
+
"loss": 1.2979,
|
3432 |
+
"step": 489
|
3433 |
+
},
|
3434 |
+
{
|
3435 |
+
"epoch": 0.36,
|
3436 |
+
"grad_norm": 0.5158994351772959,
|
3437 |
+
"learning_rate": 7.378074238009826e-05,
|
3438 |
+
"loss": 1.2363,
|
3439 |
+
"step": 490
|
3440 |
+
},
|
3441 |
+
{
|
3442 |
+
"epoch": 0.36,
|
3443 |
+
"grad_norm": 0.49265767229951024,
|
3444 |
+
"learning_rate": 7.367535748391349e-05,
|
3445 |
+
"loss": 1.228,
|
3446 |
+
"step": 491
|
3447 |
+
},
|
3448 |
+
{
|
3449 |
+
"epoch": 0.36,
|
3450 |
+
"grad_norm": 0.5308141896787576,
|
3451 |
+
"learning_rate": 7.35698368412999e-05,
|
3452 |
+
"loss": 1.2527,
|
3453 |
+
"step": 492
|
3454 |
+
},
|
3455 |
+
{
|
3456 |
+
"epoch": 0.36,
|
3457 |
+
"grad_norm": 0.5185543266636785,
|
3458 |
+
"learning_rate": 7.346418105727686e-05,
|
3459 |
+
"loss": 1.2192,
|
3460 |
+
"step": 493
|
3461 |
+
},
|
3462 |
+
{
|
3463 |
+
"epoch": 0.37,
|
3464 |
+
"grad_norm": 0.5231300605729964,
|
3465 |
+
"learning_rate": 7.335839073763865e-05,
|
3466 |
+
"loss": 1.2065,
|
3467 |
+
"step": 494
|
3468 |
+
},
|
3469 |
+
{
|
3470 |
+
"epoch": 0.37,
|
3471 |
+
"grad_norm": 0.5399567824066669,
|
3472 |
+
"learning_rate": 7.325246648895088e-05,
|
3473 |
+
"loss": 1.2563,
|
3474 |
+
"step": 495
|
3475 |
+
},
|
3476 |
+
{
|
3477 |
+
"epoch": 0.37,
|
3478 |
+
"grad_norm": 0.5239942836551379,
|
3479 |
+
"learning_rate": 7.31464089185471e-05,
|
3480 |
+
"loss": 1.2549,
|
3481 |
+
"step": 496
|
3482 |
+
},
|
3483 |
+
{
|
3484 |
+
"epoch": 0.37,
|
3485 |
+
"grad_norm": 0.5367247940798874,
|
3486 |
+
"learning_rate": 7.304021863452524e-05,
|
3487 |
+
"loss": 1.2061,
|
3488 |
+
"step": 497
|
3489 |
+
},
|
3490 |
+
{
|
3491 |
+
"epoch": 0.37,
|
3492 |
+
"grad_norm": 0.5404506218621764,
|
3493 |
+
"learning_rate": 7.293389624574422e-05,
|
3494 |
+
"loss": 1.2142,
|
3495 |
+
"step": 498
|
3496 |
+
},
|
3497 |
+
{
|
3498 |
+
"epoch": 0.37,
|
3499 |
+
"grad_norm": 0.5055969660442964,
|
3500 |
+
"learning_rate": 7.282744236182034e-05,
|
3501 |
+
"loss": 1.2451,
|
3502 |
+
"step": 499
|
3503 |
+
},
|
3504 |
+
{
|
3505 |
+
"epoch": 0.37,
|
3506 |
+
"grad_norm": 0.5423433133756662,
|
3507 |
+
"learning_rate": 7.27208575931239e-05,
|
3508 |
+
"loss": 1.2012,
|
3509 |
+
"step": 500
|
3510 |
+
},
|
3511 |
+
{
|
3512 |
+
"epoch": 0.37,
|
3513 |
+
"grad_norm": 0.5291351969461193,
|
3514 |
+
"learning_rate": 7.26141425507756e-05,
|
3515 |
+
"loss": 1.1768,
|
3516 |
+
"step": 501
|
3517 |
+
},
|
3518 |
+
{
|
3519 |
+
"epoch": 0.37,
|
3520 |
+
"grad_norm": 0.5217703642849318,
|
3521 |
+
"learning_rate": 7.250729784664316e-05,
|
3522 |
+
"loss": 1.209,
|
3523 |
+
"step": 502
|
3524 |
+
},
|
3525 |
+
{
|
3526 |
+
"epoch": 0.37,
|
3527 |
+
"grad_norm": 0.5201622197991884,
|
3528 |
+
"learning_rate": 7.240032409333764e-05,
|
3529 |
+
"loss": 1.2031,
|
3530 |
+
"step": 503
|
3531 |
+
},
|
3532 |
+
{
|
3533 |
+
"epoch": 0.37,
|
3534 |
+
"grad_norm": 0.5281271991799672,
|
3535 |
+
"learning_rate": 7.22932219042101e-05,
|
3536 |
+
"loss": 1.1987,
|
3537 |
+
"step": 504
|
3538 |
+
},
|
3539 |
+
{
|
3540 |
+
"epoch": 0.37,
|
3541 |
+
"grad_norm": 0.5573441678253518,
|
3542 |
+
"learning_rate": 7.218599189334799e-05,
|
3543 |
+
"loss": 1.2739,
|
3544 |
+
"step": 505
|
3545 |
+
},
|
3546 |
+
{
|
3547 |
+
"epoch": 0.37,
|
3548 |
+
"grad_norm": 0.5665017191299871,
|
3549 |
+
"learning_rate": 7.207863467557162e-05,
|
3550 |
+
"loss": 1.2773,
|
3551 |
+
"step": 506
|
3552 |
+
},
|
3553 |
+
{
|
3554 |
+
"epoch": 0.37,
|
3555 |
+
"grad_norm": 0.5325104774494102,
|
3556 |
+
"learning_rate": 7.19711508664307e-05,
|
3557 |
+
"loss": 1.209,
|
3558 |
+
"step": 507
|
3559 |
+
},
|
3560 |
+
{
|
3561 |
+
"epoch": 0.38,
|
3562 |
+
"grad_norm": 0.518792873366363,
|
3563 |
+
"learning_rate": 7.186354108220072e-05,
|
3564 |
+
"loss": 1.2173,
|
3565 |
+
"step": 508
|
3566 |
+
},
|
3567 |
+
{
|
3568 |
+
"epoch": 0.38,
|
3569 |
+
"grad_norm": 0.530762745727063,
|
3570 |
+
"learning_rate": 7.175580593987951e-05,
|
3571 |
+
"loss": 1.2466,
|
3572 |
+
"step": 509
|
3573 |
+
},
|
3574 |
+
{
|
3575 |
+
"epoch": 0.38,
|
3576 |
+
"grad_norm": 0.5140061528285057,
|
3577 |
+
"learning_rate": 7.164794605718366e-05,
|
3578 |
+
"loss": 1.2139,
|
3579 |
+
"step": 510
|
3580 |
+
},
|
3581 |
+
{
|
3582 |
+
"epoch": 0.38,
|
3583 |
+
"grad_norm": 0.5194168189274216,
|
3584 |
+
"learning_rate": 7.153996205254495e-05,
|
3585 |
+
"loss": 1.2476,
|
3586 |
+
"step": 511
|
3587 |
+
},
|
3588 |
+
{
|
3589 |
+
"epoch": 0.38,
|
3590 |
+
"grad_norm": 0.5487088087238914,
|
3591 |
+
"learning_rate": 7.143185454510686e-05,
|
3592 |
+
"loss": 1.2251,
|
3593 |
+
"step": 512
|
3594 |
+
},
|
3595 |
+
{
|
3596 |
+
"epoch": 0.38,
|
3597 |
+
"grad_norm": 0.49449833617368844,
|
3598 |
+
"learning_rate": 7.1323624154721e-05,
|
3599 |
+
"loss": 1.2021,
|
3600 |
+
"step": 513
|
3601 |
+
},
|
3602 |
+
{
|
3603 |
+
"epoch": 0.38,
|
3604 |
+
"grad_norm": 0.5209680110441622,
|
3605 |
+
"learning_rate": 7.121527150194349e-05,
|
3606 |
+
"loss": 1.229,
|
3607 |
+
"step": 514
|
3608 |
+
},
|
3609 |
+
{
|
3610 |
+
"epoch": 0.38,
|
3611 |
+
"grad_norm": 0.5179658980514732,
|
3612 |
+
"learning_rate": 7.110679720803156e-05,
|
3613 |
+
"loss": 1.2324,
|
3614 |
+
"step": 515
|
3615 |
+
},
|
3616 |
+
{
|
3617 |
+
"epoch": 0.38,
|
3618 |
+
"grad_norm": 0.5237224991500224,
|
3619 |
+
"learning_rate": 7.099820189493977e-05,
|
3620 |
+
"loss": 1.269,
|
3621 |
+
"step": 516
|
3622 |
+
},
|
3623 |
+
{
|
3624 |
+
"epoch": 0.38,
|
3625 |
+
"grad_norm": 0.5302189416292129,
|
3626 |
+
"learning_rate": 7.088948618531667e-05,
|
3627 |
+
"loss": 1.2041,
|
3628 |
+
"step": 517
|
3629 |
+
},
|
3630 |
+
{
|
3631 |
+
"epoch": 0.38,
|
3632 |
+
"grad_norm": 0.5384341108312423,
|
3633 |
+
"learning_rate": 7.078065070250106e-05,
|
3634 |
+
"loss": 1.1746,
|
3635 |
+
"step": 518
|
3636 |
+
},
|
3637 |
+
{
|
3638 |
+
"epoch": 0.38,
|
3639 |
+
"grad_norm": 0.5521437637462966,
|
3640 |
+
"learning_rate": 7.067169607051851e-05,
|
3641 |
+
"loss": 1.2886,
|
3642 |
+
"step": 519
|
3643 |
+
},
|
3644 |
+
{
|
3645 |
+
"epoch": 0.38,
|
3646 |
+
"grad_norm": 0.5328288678743964,
|
3647 |
+
"learning_rate": 7.056262291407772e-05,
|
3648 |
+
"loss": 1.1877,
|
3649 |
+
"step": 520
|
3650 |
+
},
|
3651 |
+
{
|
3652 |
+
"epoch": 0.39,
|
3653 |
+
"grad_norm": 0.5359494830051162,
|
3654 |
+
"learning_rate": 7.045343185856701e-05,
|
3655 |
+
"loss": 1.2202,
|
3656 |
+
"step": 521
|
3657 |
+
},
|
3658 |
+
{
|
3659 |
+
"epoch": 0.39,
|
3660 |
+
"grad_norm": 0.5288532232218185,
|
3661 |
+
"learning_rate": 7.034412353005063e-05,
|
3662 |
+
"loss": 1.21,
|
3663 |
+
"step": 522
|
3664 |
+
},
|
3665 |
+
{
|
3666 |
+
"epoch": 0.39,
|
3667 |
+
"grad_norm": 0.5512085122241619,
|
3668 |
+
"learning_rate": 7.02346985552653e-05,
|
3669 |
+
"loss": 1.2798,
|
3670 |
+
"step": 523
|
3671 |
+
},
|
3672 |
+
{
|
3673 |
+
"epoch": 0.39,
|
3674 |
+
"grad_norm": 0.533944460040126,
|
3675 |
+
"learning_rate": 7.01251575616165e-05,
|
3676 |
+
"loss": 1.2539,
|
3677 |
+
"step": 524
|
3678 |
+
},
|
3679 |
+
{
|
3680 |
+
"epoch": 0.39,
|
3681 |
+
"grad_norm": 0.5837632563221825,
|
3682 |
+
"learning_rate": 7.0015501177175e-05,
|
3683 |
+
"loss": 1.1335,
|
3684 |
+
"step": 525
|
3685 |
+
}
|
3686 |
+
],
|
3687 |
+
"logging_steps": 1.0,
|
3688 |
+
"max_steps": 1353,
|
3689 |
+
"num_input_tokens_seen": 0,
|
3690 |
+
"num_train_epochs": 1,
|
3691 |
+
"save_steps": 25,
|
3692 |
+
"total_flos": 4.4085090777437307e+18,
|
3693 |
+
"train_batch_size": 16,
|
3694 |
+
"trial_name": null,
|
3695 |
+
"trial_params": null
|
3696 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:91a5b0aeacf520d00ebefbd60b0266b0ab146e9ad9ce5cb558fac2a023344a6d
|
3 |
+
size 6584
|
zero_to_fp32.py
ADDED
@@ -0,0 +1,592 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
215 |
+
elif zero_stage == 3:
|
216 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
217 |
+
|
218 |
+
|
219 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
220 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
221 |
+
return
|
222 |
+
|
223 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
224 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
225 |
+
|
226 |
+
if debug:
|
227 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
229 |
+
|
230 |
+
wanted_params = len(frozen_param_shapes)
|
231 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
232 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
233 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
234 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
235 |
+
|
236 |
+
total_params = 0
|
237 |
+
total_numel = 0
|
238 |
+
for name, shape in frozen_param_shapes.items():
|
239 |
+
total_params += 1
|
240 |
+
unpartitioned_numel = shape.numel()
|
241 |
+
total_numel += unpartitioned_numel
|
242 |
+
|
243 |
+
state_dict[name] = frozen_param_fragments[name]
|
244 |
+
|
245 |
+
if debug:
|
246 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
247 |
+
|
248 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
249 |
+
|
250 |
+
|
251 |
+
def _has_callable(obj, fn):
|
252 |
+
attr = getattr(obj, fn, None)
|
253 |
+
return callable(attr)
|
254 |
+
|
255 |
+
|
256 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
257 |
+
param_shapes = zero_model_states[0].param_shapes
|
258 |
+
|
259 |
+
# Reconstruction protocol:
|
260 |
+
#
|
261 |
+
# XXX: document this
|
262 |
+
|
263 |
+
if debug:
|
264 |
+
for i in range(world_size):
|
265 |
+
for j in range(len(fp32_flat_groups[0])):
|
266 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
267 |
+
|
268 |
+
# XXX: memory usage doubles here (zero2)
|
269 |
+
num_param_groups = len(fp32_flat_groups[0])
|
270 |
+
merged_single_partition_of_fp32_groups = []
|
271 |
+
for i in range(num_param_groups):
|
272 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
273 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
274 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
275 |
+
avail_numel = sum(
|
276 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
277 |
+
|
278 |
+
if debug:
|
279 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
280 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
281 |
+
# not asserting if there is a mismatch due to possible padding
|
282 |
+
print(f"Have {avail_numel} numels to process.")
|
283 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
284 |
+
|
285 |
+
# params
|
286 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
287 |
+
# out-of-core computing solution
|
288 |
+
total_numel = 0
|
289 |
+
total_params = 0
|
290 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
291 |
+
offset = 0
|
292 |
+
avail_numel = full_single_fp32_vector.numel()
|
293 |
+
for name, shape in shapes.items():
|
294 |
+
|
295 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
296 |
+
total_numel += unpartitioned_numel
|
297 |
+
total_params += 1
|
298 |
+
|
299 |
+
if debug:
|
300 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
301 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
302 |
+
offset += unpartitioned_numel
|
303 |
+
|
304 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
305 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
306 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
307 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
308 |
+
align_to = 2 * world_size
|
309 |
+
|
310 |
+
def zero2_align(x):
|
311 |
+
return align_to * math.ceil(x / align_to)
|
312 |
+
|
313 |
+
if debug:
|
314 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
315 |
+
|
316 |
+
offset = zero2_align(offset)
|
317 |
+
avail_numel = zero2_align(avail_numel)
|
318 |
+
|
319 |
+
if debug:
|
320 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
321 |
+
|
322 |
+
# Sanity check
|
323 |
+
if offset != avail_numel:
|
324 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
325 |
+
|
326 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
327 |
+
|
328 |
+
|
329 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
330 |
+
state_dict = OrderedDict()
|
331 |
+
|
332 |
+
# buffers
|
333 |
+
buffers = zero_model_states[0].buffers
|
334 |
+
state_dict.update(buffers)
|
335 |
+
if debug:
|
336 |
+
print(f"added {len(buffers)} buffers")
|
337 |
+
|
338 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
339 |
+
|
340 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
341 |
+
|
342 |
+
# recover shared parameters
|
343 |
+
for pair in zero_model_states[0].shared_params:
|
344 |
+
if pair[1] in state_dict:
|
345 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
346 |
+
|
347 |
+
return state_dict
|
348 |
+
|
349 |
+
|
350 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
351 |
+
remainder = unpartitioned_numel % world_size
|
352 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
353 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
354 |
+
return partitioned_numel, padding_numel
|
355 |
+
|
356 |
+
|
357 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
358 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
359 |
+
return
|
360 |
+
|
361 |
+
if debug:
|
362 |
+
for i in range(world_size):
|
363 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
364 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
365 |
+
|
366 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
367 |
+
wanted_params = len(frozen_param_shapes)
|
368 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
369 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
370 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
371 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
372 |
+
|
373 |
+
total_params = 0
|
374 |
+
total_numel = 0
|
375 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
376 |
+
total_params += 1
|
377 |
+
unpartitioned_numel = shape.numel()
|
378 |
+
total_numel += unpartitioned_numel
|
379 |
+
|
380 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
381 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
382 |
+
|
383 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
384 |
+
|
385 |
+
if debug:
|
386 |
+
print(
|
387 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
388 |
+
)
|
389 |
+
|
390 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
391 |
+
|
392 |
+
|
393 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
394 |
+
param_shapes = zero_model_states[0].param_shapes
|
395 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
396 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
397 |
+
# param, re-consolidating each param, while dealing with padding if any
|
398 |
+
|
399 |
+
# merge list of dicts, preserving order
|
400 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
401 |
+
|
402 |
+
if debug:
|
403 |
+
for i in range(world_size):
|
404 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
405 |
+
|
406 |
+
wanted_params = len(param_shapes)
|
407 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
408 |
+
# not asserting if there is a mismatch due to possible padding
|
409 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
410 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
411 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
412 |
+
|
413 |
+
# params
|
414 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
415 |
+
# out-of-core computing solution
|
416 |
+
offset = 0
|
417 |
+
total_numel = 0
|
418 |
+
total_params = 0
|
419 |
+
for name, shape in param_shapes.items():
|
420 |
+
|
421 |
+
unpartitioned_numel = shape.numel()
|
422 |
+
total_numel += unpartitioned_numel
|
423 |
+
total_params += 1
|
424 |
+
|
425 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
426 |
+
|
427 |
+
if debug:
|
428 |
+
print(
|
429 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
430 |
+
)
|
431 |
+
|
432 |
+
# XXX: memory usage doubles here
|
433 |
+
state_dict[name] = torch.cat(
|
434 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
435 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
436 |
+
offset += partitioned_numel
|
437 |
+
|
438 |
+
offset *= world_size
|
439 |
+
|
440 |
+
# Sanity check
|
441 |
+
if offset != avail_numel:
|
442 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
443 |
+
|
444 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
445 |
+
|
446 |
+
|
447 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
448 |
+
state_dict = OrderedDict()
|
449 |
+
|
450 |
+
# buffers
|
451 |
+
buffers = zero_model_states[0].buffers
|
452 |
+
state_dict.update(buffers)
|
453 |
+
if debug:
|
454 |
+
print(f"added {len(buffers)} buffers")
|
455 |
+
|
456 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
457 |
+
|
458 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
459 |
+
|
460 |
+
# recover shared parameters
|
461 |
+
for pair in zero_model_states[0].shared_params:
|
462 |
+
if pair[1] in state_dict:
|
463 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
464 |
+
|
465 |
+
return state_dict
|
466 |
+
|
467 |
+
|
468 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
|
469 |
+
"""
|
470 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
471 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
472 |
+
via a model hub.
|
473 |
+
|
474 |
+
Args:
|
475 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
476 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
477 |
+
|
478 |
+
Returns:
|
479 |
+
- pytorch ``state_dict``
|
480 |
+
|
481 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
482 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
483 |
+
the checkpoint.
|
484 |
+
|
485 |
+
A typical usage might be ::
|
486 |
+
|
487 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
488 |
+
# do the training and checkpoint saving
|
489 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
490 |
+
model = model.cpu() # move to cpu
|
491 |
+
model.load_state_dict(state_dict)
|
492 |
+
# submit to model hub or save the model to share with others
|
493 |
+
|
494 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
495 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
496 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
497 |
+
|
498 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
499 |
+
|
500 |
+
"""
|
501 |
+
if tag is None:
|
502 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
503 |
+
if os.path.isfile(latest_path):
|
504 |
+
with open(latest_path, 'r') as fd:
|
505 |
+
tag = fd.read().strip()
|
506 |
+
else:
|
507 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
508 |
+
|
509 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
510 |
+
|
511 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
512 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
513 |
+
|
514 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
|
515 |
+
|
516 |
+
|
517 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
|
518 |
+
"""
|
519 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
520 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
521 |
+
|
522 |
+
Args:
|
523 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
524 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
525 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
526 |
+
"""
|
527 |
+
|
528 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
529 |
+
print(f"Saving fp32 state dict to {output_file}")
|
530 |
+
torch.save(state_dict, output_file)
|
531 |
+
|
532 |
+
|
533 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
534 |
+
"""
|
535 |
+
1. Put the provided model to cpu
|
536 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
537 |
+
3. Load it into the provided model
|
538 |
+
|
539 |
+
Args:
|
540 |
+
- ``model``: the model object to update
|
541 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
542 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
543 |
+
|
544 |
+
Returns:
|
545 |
+
- ``model`: modified model
|
546 |
+
|
547 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
548 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
549 |
+
conveniently placed for you in the checkpoint folder.
|
550 |
+
|
551 |
+
A typical usage might be ::
|
552 |
+
|
553 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
554 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
555 |
+
# submit to model hub or save the model to share with others
|
556 |
+
|
557 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
558 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
559 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
560 |
+
|
561 |
+
"""
|
562 |
+
logger.info(f"Extracting fp32 weights")
|
563 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
564 |
+
|
565 |
+
logger.info(f"Overwriting model with fp32 weights")
|
566 |
+
model = model.cpu()
|
567 |
+
model.load_state_dict(state_dict, strict=False)
|
568 |
+
|
569 |
+
return model
|
570 |
+
|
571 |
+
|
572 |
+
if __name__ == "__main__":
|
573 |
+
|
574 |
+
parser = argparse.ArgumentParser()
|
575 |
+
parser.add_argument("checkpoint_dir",
|
576 |
+
type=str,
|
577 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
578 |
+
parser.add_argument(
|
579 |
+
"output_file",
|
580 |
+
type=str,
|
581 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
582 |
+
parser.add_argument("-t",
|
583 |
+
"--tag",
|
584 |
+
type=str,
|
585 |
+
default=None,
|
586 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
587 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
588 |
+
args = parser.parse_args()
|
589 |
+
|
590 |
+
debug = args.debug
|
591 |
+
|
592 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)
|