|
--- |
|
base_model: vinai/bartpho-syllable |
|
tags: |
|
- text2text-generation |
|
- generated_from_trainer |
|
metrics: |
|
- sacrebleu |
|
model-index: |
|
- name: nlp_vietnamese_spelling |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# nlp_vietnamese_spelling |
|
|
|
This model is a fine-tuned version of [vinai/bartpho-syllable](https://huggingface.co/vinai/bartpho-syllable) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1084 |
|
- Sacrebleu: 19.1727 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Sacrebleu | |
|
|:-------------:|:-----:|:-----:|:---------------:|:---------:| |
|
| 1.0565 | 0.25 | 1000 | 0.4944 | 13.1438 | |
|
| 0.5878 | 0.5 | 2000 | 0.2775 | 16.2433 | |
|
| 0.4367 | 0.75 | 3000 | 0.2222 | 17.0610 | |
|
| 0.3627 | 1.0 | 4000 | 0.1793 | 17.9412 | |
|
| 0.2672 | 1.25 | 5000 | 0.1533 | 18.3610 | |
|
| 0.2305 | 1.5 | 6000 | 0.1429 | 18.4508 | |
|
| 0.2164 | 1.75 | 7000 | 0.1296 | 18.8490 | |
|
| 0.1948 | 2.01 | 8000 | 0.1205 | 19.0083 | |
|
| 0.1537 | 2.26 | 9000 | 0.1167 | 19.0106 | |
|
| 0.1491 | 2.51 | 10000 | 0.1131 | 19.0764 | |
|
| 0.1414 | 2.76 | 11000 | 0.1084 | 19.1727 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.39.3 |
|
- Pytorch 2.1.2 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |
|
|