Update README.md
Browse files
README.md
CHANGED
@@ -51,7 +51,7 @@ The biggest advantage is the transferability of the vlT5 model, as it works well
|
|
51 |
- **Language:** pl, en (but works relatively well with others)
|
52 |
- **Training data:** POSMAC
|
53 |
- **Online Demo:** Visit our online demo for better results [https://nlp-demo-1.voicelab.ai/](https://nlp-demo-1.voicelab.ai/)
|
54 |
-
- **Paper:** [Keyword Extraction from Short Texts with a Text-To-Text Transfer Transformer, ACIIDS 2022](
|
55 |
|
56 |
# Corpus
|
57 |
|
@@ -146,7 +146,7 @@ CC BY 4.0
|
|
146 |
|
147 |
If you use this model, please cite the following paper:
|
148 |
|
149 |
-
Piotr Pęzik, Agnieszka Mikołajczyk-Bareła, Adam Wawrzyński, Bartłomiej Nitoń, Maciej Ogrodniczuk, Keyword Extraction from Short Texts with a Text-To-Text Transfer Transformer, ACIIDS 2022
|
150 |
|
151 |
|
152 |
# Authors
|
|
|
51 |
- **Language:** pl, en (but works relatively well with others)
|
52 |
- **Training data:** POSMAC
|
53 |
- **Online Demo:** Visit our online demo for better results [https://nlp-demo-1.voicelab.ai/](https://nlp-demo-1.voicelab.ai/)
|
54 |
+
- **Paper:** [Keyword Extraction from Short Texts with a Text-To-Text Transfer Transformer, ACIIDS 2022](https://arxiv.org/abs/2209.14008)
|
55 |
|
56 |
# Corpus
|
57 |
|
|
|
146 |
|
147 |
If you use this model, please cite the following paper:
|
148 |
|
149 |
+
[Piotr Pęzik, Agnieszka Mikołajczyk-Bareła, Adam Wawrzyński, Bartłomiej Nitoń, Maciej Ogrodniczuk, Keyword Extraction from Short Texts with a Text-To-Text Transfer Transformer, ACIIDS 2022](https://arxiv.org/abs/2209.14008)
|
150 |
|
151 |
|
152 |
# Authors
|